• Title/Summary/Keyword: High flux membrane

Search Result 281, Processing Time 0.03 seconds

Comparison of Anoxic/Oxic Membrane Bioreactor - Reverse Osmosis and Activated Sludge Process-Microfiltration-Reverse Osmosis Process for Advanced Treatment of Wastewater (폐수의 고도처리를 위한 무산소/호기형 분리막생물반응조 - 역삼투 공정과 활성슬러지공정 - 정밀여과 - 역삼투 공정의 비교)

  • Roh, Sung-Hee;Kim, Sun-Il;Quan, Hong-hua;Song, Yon-Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.5
    • /
    • pp.521-526
    • /
    • 2006
  • A membrane bioreactor (MBR) is an effective tool for wastewater treatment with recycling. MBR process has several advantages over conventional activated sludge process (ASP); reliability, compactness, and quality of treated water. The resulting high-quality and disinfected effluents suggest that MBR process can be suitable for the reused and recycling of wastewater. An anoxic/oxic (A/O) type MBR was applied to simultaneous removal of organics and nutrients in sewage. At first, the efficiency of submerged MBR process was investigated using a hollow fiber microfiltration membrane with a constant flux of $10.2L/m^2{\cdot}h$ at each solids retention time (SRT). Results showed that protein/carbohydrate (P/C) ratio increased and total extracellular polymeric substances (EPS) remained constant with SRT increased. Secondly, A/O type MBR with a reverse osmosis (RO) membrane was employed to treat the municipal wastewater. The performance of A/O type MBR-RO process is better for the treatment of organics and nutrients than ASP-MF-RO process in terms of consistent effluents quality.

Study on Korean Seawater Characterization and Crystallization for Seawater Desalination Brine Treatment (해수담수화 농축수 처리를 위한 한국 해수 특성 및 결정화 연구)

  • Jeong, Sanghyun;Eiff, David von;Byun, Siyoung;Lee, Jieun;An, Alicia Kyoungjin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.442-448
    • /
    • 2021
  • Seawater desalination is a technology through which salt and other constituents are removed from seawater to produce fresh water. While a significant amount of fresh water is produced, the desalination process is limited by the generation of concentrated brine with a higher salinity than seawater; this imposes environmental and economic problems. In this study, characteristics of seawater from three different locations in South Korea were analyzed to evaluate the feasibility of crystallization to seawater desalination. Organic and inorganic substances participating in crystal formation during concentration were identified. Then, prediction and economic feasibility analysis were conducted on the actual water flux and obtainable salt resources (i.e. Na2SO4) using membrane distillation and energy-saving crystallizer based on multi-stage flash (MSF-Cr). The seawater showed a rather low salinity (29.9~34.4 g/L) and different composition ratios depending on the location. At high concentrations, it was possible to observe the participation of dissolved organic matter and various ionic substances in crystalization. When crystallized, materials capable of forming various crystals are expected. However, it seems that different salt concentrations should be considered for each location. When the model developed using the Aspen Plus modular was applied in Korean seawater conditions, relatively high economic feasibility was confirmed in the MSF-Cr. The results of this study will help solve the environmental and economic problems of concentrated brine from seawater desalination.

Characteristic analysis of The Catalyst Layer and Gas Diffusion Layer Model for FEMFC optimal design (FEMFC 최적설계를 위한 촉매층모델과 기체확산층 특성해석)

  • Kwon, Kee-Hong
    • Journal of IKEEE
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • Proton Exchange Membrane Fuel Cell (FEMFC) is a strong candidate for future automobile and power generation because of its high power density, low emission and low operation temperature. The major concerns of the gas diffusion layer (GDL) inside a FEMFC is water management. The GDL is typically comprised of carbon for electrical conductivity and PTFE for Hydrophobicity. In this simulation, GDL flooding was investigated using a simplified approach method of an established equation models(Fick' Law, Darcy, Law, Stefan-Maxwell diffusion). The performance of GDL was shown using result of the inner heat, water density and oxygen density of the cell using model equations. The catalyst layer mode in FEMFC showed results of effectiveness factor, Butler-volmer and hydrogen flux density. These results are interesting because the influence of several factors has been shown and the information will be helpful for fuel cell design.

Drug Release and Skin Irritancy of Poloxamer Gel Containing Kojic Acid (코지산을 함유한 폴록사머 겔 제제의 약물방출 및 피부자극성)

  • Park, Eun-Woo;Cho, Seong-Wan;Kim, Dong-Sup;Choi, Ki-Hwan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 1998
  • Low toxicity, reverse thermal gelation and high drug loading capabilities suggest that poloxamer 407 gels have great potential as a topical drug delivery system. Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of skin irritancy due to its acidic pH. Poloxamer gels of different polymer contents were formulated to overcome the problem and compared to the cream type formulations of either w/o/w multiple emulsion cream or o/w type emulsion cream. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solutions. Drug release from w/o/w multiple emulsion cream was controlled by oil membrane, showing the apparent zero order release kinetics. The KA release from the poloxamer gels was also controlled by the gel matrix, showing that drug release increased linearly as KA contents increase, but decreased exponentially as the polymer contents increase. In the skin irritancy test, the primary irritancy index(PII) of poloxamer gel base was lower than those of multiple emulsion cream base and o/w cream. Depending on KA contents or polymer contents in the gel. PH values in poloxamer gels were ranged from 1.3 to 2.0, which are interpreted as low or negligible irritation on skin. There was a good correlation between the log value of flux in drug release and PII value in skin irritation. It was possible to conclude that the poloxamer gels containing KA might be a good candidate for an antimelanogenic topical delivery system by virtue of the controlled release of the drug and the reduced skin irritancy.

  • PDF

Evaluation of Performance and Economical Efficiency of the Advanced Wastewater Treatment System (고도(高度) 하수처리(下水處理) 시스템의 처리성능 및 경제성 평가에 관한 연구)

  • Kim, Dong Ha
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.61-71
    • /
    • 1999
  • For a high-rate fermentation and recovery of organic acid, we have developed a new organic acid fermentation reactor with membrane filter, which is the most important part in the new advanced wastewater treatment system. The recovered organic acid is to be reused as an organic carbon source at denitrification process. Some experiments were conducted to compare the performance of acid fermentation at different SRTs, such as 5, 10, and 20 days. The total organic acid concentration produced during the runs was in the range of 2,100-2,900 (mgC/L). The conversion efficiency from substrate to organic acid reached to from 43% to 59%. The recovery rate of organic acid from substrate based on TOC was from 26% to 53%. Regardless of operational conditions, it has been able to maintain the membrane flux constantly, in the range of 0.4-0.46 ($m^3/m^2/day$). The transmembrane pressure drop was 0.2-0.3 (kg/cm) for 100 day's operation. The result of simulation is as follows. Organic removal efficiency of the new advanced treatment system is 95%. 73% of Nitrogen is removed. The removal efficiency of Phosphorus is 93%. By coqulation, soluble phosphorus is able to remove from the water treatment lines, which is impossible at conventional activated sludge system. The unit construction cost is 65000 (yen/m3) and it was 1.4 times than that of the standard activated sludge system. The unit operation cast is 7.7 ($yen/m^3/day$) and it was 1.3 times than that of the standard activated sludge system.

  • PDF

Application of Pulsed Electric Field Treatment for Scaling Prevention (스케일형성 방지를 위한 펄스 전기장 처리의 적용)

  • Choi, Seung-Pil;Kim, Jong-Oh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.51-56
    • /
    • 2011
  • This study was conducted to investigate the applicability of pulsed electric field (PEF) treatment for the prevention of scaling formation and membrane fouling reduction. To validate the effect of PEF and to identify the mechanism, some experiments with and without PEF treatment were carried out. PEF treatment affected the precipitation of $CaCO_3$ by which $CaCO_3$ particles were actively grown and sedimented. It was confirmed that the calcium ions were decreased as 78% and particle size was grown by PEF treatment. It was also verified that the crystalline structure of $CaCO_3$ was transformed by PEF treatment from Aragonite, which is formed at a high temperature and hard to be removed, to Calcite being stable at room temperature. In PEF treatment, permeate volume and permeation flux were greater than that of without PEF, case while Langelier Index(LI) decreased. From the experiment results, PEF treatment is believed to be an effective method to prevent scaling formation and to mitigate $CaCO_3$ fouling as the pretreatment of membrane filtration.

Membrane Characteristics for Removing Particulates in PFC Wastes (PFC제염폐액 내의 미립자 제거를 위한 여과막의 특성 연구)

  • Kim Gye-Nam;Lee Sung-Yeol;Won Hui-Jun;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.149-157
    • /
    • 2005
  • PFC(Perfluorocarbon) decontamination process is one of best methods to remove hot particulate adhered at inside surface of hot cell and surface of equipment in hot cell. It was necessary to develop a particulate filtration equipment to reuse PFC solution used on PFC decontamination due to its high cost and to minimize the volume of second wastewater. Contamination characteristics of hot particulate were investigated and then a filtration process was presented to remove hot particulate in PFC solution generated through PFC decontamination process. The removal efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic(Al$_{2}$O$_{3}$ filter showed more than 95$\%$. The removal efficiency of PVDF filter was a little lower than those of other kiters at same pressure(3psi). A ceramic filter showed a higher removal efficiency with other filters, while a little lower flux rate than other filters. Due to inorganic composition, a ceramic filter was highly stable against radio nuclides in comparison with PVDF and PP membrane, which generate H$_{2}$ gas in e-radioactivity atmosphere. Therefore, the adoption of ceramic filter is estimated to be suitable for the real nitration process.

  • PDF

A Pilot Study for Microfiltration of Alcohol Stillage Condensate and Permeate Recycle to Fermentation Broth (알코홀 증류폐액의 Pilot Scale 정밀여과와 여과액의 발효 재활용에 대한 연구)

  • 김영범;이기세;남궁견;김종현
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.403-408
    • /
    • 2001
  • Distillation condensate generated from downstream processing of microbial alcohol fermentation imposes a serious burden to biological wastewater treatment or anaerobic digestion due to its high contents of SS (suspended solids) and TN (total nitrogen), A pilot scale microfiltration of the stillage condensate with a stainless steel SCEPTER membrane of 0.1 ${\mu}$m pore size was carried out to remove SS which was mostly composed of microbial cell residue. A stable permeate flux was achieved when the decanter effluent containing 0.7% of SS was filtered under the conditions of X10 VCR (volume concentration ratio), 2.5 bar of TMP (transmembrane pressure), and 60$^{\circ}C$. When stillage condensate with 2.6% SS was treated directly with microfiltration, VCR below X3 was recommended for a long duration of filtration. The permeate and retentate obtained from microfiltration were recycled to make-up medium of fermentation. Adding permeate or retentate up to 30% of fermentation volume showed no distinguished undesirable influence during the course of alcohol fermentation. Although only slight improvements in the final amount of CO$_2$ evolution and alcohol content were observed, fermentation rate increased so that the required time to reach 450 L/ton of CO$_2$ evolution was shortened to 72% of that with normal media.

  • PDF

Comparison of Performances of Forward Osmosis and Membrane Distillation Processes for Shale Gas Plant Water Treatment (셰일가스 플랜트 용수 처리를 위한 정삼투(FO)와 막증발(MD) 공정의 성능 비교)

  • Koo, Jaewuk;Lee, Sangho;Shin, Yonghyun;Yun, Taekgeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.3
    • /
    • pp.279-284
    • /
    • 2015
  • As non-conventional oil resources such as shale gas have been widely developed, proper treatment of flowback and produced water is becoming important. However, application of conventional water treatment techniques is limited due to high concentration of pollutants such as oil and grease, organics, harmful chemicals, and inorganic ions. In this study, we examined the feasibility of using forward osmosis (FO) and air gap membrane distillation (AGMD) as novel treatment options for shale gas wastewater. Laboratory-scale FO and MD devices were fabricated and used for the experiments. Results showed that FO could be used to treat the synthetic wastewater. Using 5 M NaCl as the draw solution, the flux was approximately $6L/m^2-hr$ during the treatment of low range wastewater (TDS: 66,000 mg/L). Nevertheless, AGMD was more effective to treat high range wastewater (Total Dissolved Solid: 260,000 mg/L) than FO.

Hydrogen Permeation of SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β Proton-Conducting Ceramic Membranes (프로톤 전도성 SrCe0.95Gd0.05O3-α-Ce0.9Gd0.1O2-β 복합체 멤브레인의 수소투과 특성)

  • Kim, Hwan-Soo;Yu, Ji-Haeng;Shin, Min-Jae
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • Proton conductors have attracted considerable attention for solid oxide fuel cell (SOFC), hydrogen pump, gas sensor, and membrane separators. Doped $SrCeO_3$ exhibits appreciable proton conductivity in hydrogen-containing atmosphere at high temperature. However commercial realization has been hampered due to the reactivity of $SrCeO_3$ with $CO_2$. The chemical stability and proton conductivity are dependent on dopant type. The purpose of this work is to investigate chemical stability of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composites in $CO_2$ and $H_2$ gases. Thermogravimetric analysis (TGA) was performed in gaseous $CO_2$ and electrical conductivity of the composites were also measured between 500 and $900^{\circ}C$ in air and $H_2$ atmosphere. $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes showed good chemical stability of in $CO_2$ atmosphere and high conductivity at hydrogen condition. The hydrogen permeation of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$ composite membranes was investigated as a function of volumetric content of $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}$. The $SrCe_{0.95}Gd_{0.05}O_{3-\alpha}-Ce_{0.9}Gd_{0.1}O_{2-\beta}$(6:4) membrane with a thickness of 1.0 mm showed the highest hydrogen permeability with the flux reaching of 0.12 $ml/min{\cdot}cm^2$ at $800^{\circ}C$ in 100%$H_2/N_2$ as feed gas.