• Title/Summary/Keyword: High energy ignition system

Search Result 73, Processing Time 0.03 seconds

Development and Application of High Energy Ignition System Using Plasma (플라즈마 응용 고 에너지 점화 시스템 개발 및 적용)

  • Kang, Hyehyun;Choi, Duwon;Park, Jinil;Lee, Jonghwa;Park, Kyoungseok;Ahn, Jongyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.148-156
    • /
    • 2014
  • This study is a follow-up study of "Development of Plasma Ignition System" was presented at the 2013 KSAE spring conference. This study compares lean limit of conventional ignition system with plasma ignition system on constant volume combustion test & Engine Combustion test.

Fundamental Experiments of a Compression Ignition Engine Using Gaseous Fuel (가스체 연료를 사용하는 압축착화기관에 관한 기초적 연구)

  • ;太田 幹郞
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.147-157
    • /
    • 1996
  • Natural gas is gaining more attraction as a future fuel in particular both for environmental protection and energy conservation. In order to bring about more widespread use of gaseous engines, the technology capable of achieving output and efficiency performance equivalent to that of diesel engines needs to be developed. In the present paper, the requirements of the pilot torch from pre-chamber for ensuring ignition and promoting combustion are discussed by means of taking high-speed flame photography and system can run with leaner mixture of various fuels comparing to the electric plug ignition system cause the ignition delay period ignited with the torch and the combustion period are very short in spite of changing A/F of gaseous fuels in the main chamber. However, the suitable piston-cavity design for the use of lower-hydrocarbon fuels such as propane and butane must be discussed increasingly in the mear future.

Analysis of Electromagnetic Wave for Spark Plug Cable in Distributorless Spark Ignition System (무배전기식 불꽃 점화 시스템의 점화 플러그 케이블에서 발생되는 전자파의 분석)

  • Kang, Sang-Won;Choe, Gwang-Je;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • It is an analysis about electromagnetic wave which is generated from a Spark plug cable of Distributorless spark ignition system. In case of Distributorless spark ignition system, high frequency generation is an ignition coil and Spark plug cable and Spark plug could be activated with electromagnetic wave radiation antenna. I calculated a resonant frequency with HFSS by measuring length of Spark plug cable and Spark plug. The antenna was considered as ${\lambda}/4$ monopole antenna in this calculation. According to power spectrum measurement analysis of engine room radiated electromagnetic wave and calculated Resonant frequency, it is possible to find out that the Distributorless spark ignition system radiates high frequency energy in certain frequency band.

$\mu\textrm{p}$-based Electronic Control System for Automobiles Part1. Electronic Engine Control System (자동차의 마이크로프로셋서를 이용한 전자식 제어시스템에 대한 연구 제1편 : 전자식 엔진 제어시스템)

  • Chae, Suk;Kim, Young-Lip;Liu, Joon;Kim, Kwang-Rak;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.17 no.5
    • /
    • pp.15-21
    • /
    • 1980
  • An engine control system in which the conventional mechanical ignition system is studied. The contact point of the breaker is replaced by the contactless magnetic pick up sensor from which the information of the speed and the position of the crankshaft is extracted , and further an electronic High Energy Ignitim System Is designed, implemented and tested . The High Energy Igniticwl System increases the secondary spark voltage of the ignition coil from the conventional 10000~15000 volts to the 30000~40000 volts resulting in improving the combustion efficiency. Also, instead of the conventional advimce mechanism forigniliontiming control, a microprocessorbased timinng mechanisn is installed to determine the ignition timing data in response to the engine rpm and the intake manifold vacuum.

  • PDF

A Modeling of Flame Initiation and Its Development in SI Engines (SI 기관에서 초기 화염의 생성 및 성장에 대한 모델링)

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.288-298
    • /
    • 1999
  • In spark ignited engines, the electrical spark not only sets the time for the onset of combustion but also is able to greatly influence the character of the initial flame growth and the subsequent combustion, and thereby can influence engine performance. The relative importance of the ignition energy is particularly high under lean or high residual gas or exhaust gas recirculation (EGR). In this study, a modeling of flame Initiation and its development is proposed. Submodels consist in representing of cylinder pressure and temperature, heat transfer to cylinder wall, and flame kernel heat transfer to ambient air and to spark plug electrodes. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy, and laminar and turbulent flame velocity.

A Study on Cyclone Combustion System for Efficient Thermal Oxidation of VOC (휘발성 유기물질의 효율적 열산화를 위한 사이클론 연소시스템 연구)

  • 현주수;이시훈;임영준;민병무
    • Journal of Energy Engineering
    • /
    • v.13 no.2
    • /
    • pp.112-117
    • /
    • 2004
  • Volatile organic compounds (VOCs) are low calorific value gases (LCVG) emitted from chemical processes such as painting booth, dye works and drying processes etc. Characteristics of VOCs are low calorific values less than 150kcal/㎥, high activation energy for ignition and low energy output. These characteristics usually make combustion unstable and its treatment processes needs high-energy consumption. The cyclone combustion system is suitable for LCVG burning because it can recirculate energy through a high swirling flow to supply the activation energy for ignition, increases energy density In make a combustion temperature higher than usual swirl combustor and also increases mixing intensity. This research was conducted to develop optimized cyclone combustion system for thermal oxidation of VOCs. This research was executed to establish the effect of swirl number with respect to the combustion temperature and composition of exhausted gas in the specific combustor design.

Basic Performance Characteristics of HCCI (Homogeneous Charge Compression Ignition) Engine

  • Choi Gyeung Ho;Chung Yon Jong;Kim Ji Moon;Dibbler Robert W.;Han Sung Bin
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.226-231
    • /
    • 2005
  • Essentially combination of spark ignition and compression ignition engines, the HCCI engine exhibits low NOx and Particulate Matter (PM) emissions as well as high efficiency under part load. This paper is concerned with the Homogeneous Charge Compression Ignition (HCCI) engine as a new concept in engines and a power source for future automotive applications. In this research, a 4 cylinder diesel engine was converted into a HCCI engine, and propane was used as the fuel. The purpose of this research is to show the effects of fuel flow rate and the temperature of the intake manifold on the performance and exhaust of an HCCI engine.

PIV Measurements on the Flame Initiation and Propagation under Gas Explosions by Electrostatic Discharge Energies in a Confined Chamber with an Obstacle (장애물이 있는 챔버 내부의 정전기 방전 에너지에 의한 가스 폭발시 초기화염과 화염전파 특성에 대한 PIV 계측)

  • Park, Dal-Jae;Lee, Seok-Hwan;Sung, Jae-Yong;Lee, Young-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.682-687
    • /
    • 2009
  • In order to investigate the effects of three different electrostatic discharge energies on gas explosions, a high-speed PIV system has been applied. The present study paid attention to the flame initiation by the gas explosions and its propagation at the existence of an obstacle within a chamber. Three different ignition energies such as 0.56 mJ, 52.87 mJ and 112.5 mJ were used. It is found that the ignition kernel is bent by the electrostatic discharge during the flame initiation. Tangential velocities of unburnt mixture ahead of initially propagating flame fronts are increased with increasing ignition energy, which makes the flame propagation faster before it reaches the obstacle. Although the flame speed was found to be less sensitive to the ignition energies, the flame developments were different. The effects of the energies on explosion pressures were also discussed.

Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method (OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.545-550
    • /
    • 2012
  • High Energy density metal powder has high melting point of oxide film. By this, the ignition source that can make a thermal effect of high-temperature during short time is needed to overcome ignition disturbance mechanism by oxide film. So effective ignition does not occurred with hydrocarbon ignitor, $H_2-O_2$ ignitor, high power laser. But steam plasma can be generate about 5000 K temperature field in short order. Because a steam plasma uses steam as the working gas, it is environmental-friendly and economical. Therefore in this study, we analyze steam plasma temperature field and radical species with optical emission spectroscopy method in order to apply steam plasma ignitor to metal combustion system and cloud particle ignition was identified in visual.

  • PDF

Development and performance analysis of a Miller cycle in a modified using diesel engine

  • Choi, Gyeung-Ho;Poompipatpong, Chedthawut;Koetniyom, Saiprasit;Chung, Yon-Jong;Chang, Yong-Hoon;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.198-203
    • /
    • 2008
  • The objective of the research was to study the effects of Miller cycle in a modified using diesel engine. The engine was dedicated to natural gas usage by modifying pistons, fuel system and ignition systems. The engine was installed on a dynamometer and attached with various sensors and controllers. Intake valve timing, engine speed, load, injection timing and ignition timing are main parameters. The results of engine performances and emissions are present in form of graphs. Miller Cycle without supercharging can increase brake thermal efficiency and reduce brake specific fuel consumption. The injection timing must be synchronous with valve timing, speed and load to control the performances, emissions and knock margin. Throughout these tested speeds, original camshaft is recommended to obtain high volumetric efficiency. Retard ignition timing can reduce $NO_x$ emissions while maintaining high efficiency.