• Title/Summary/Keyword: High energy

Search Result 20,216, Processing Time 0.044 seconds

Fabrication arid Performance Tests of Flywheel Energy Storage System using High Tc Superconducting Bearing (고온초전도체 베어링을 사용하는 에너지 저장용 플라이휠 장치의 제작 및 성능 평가)

  • Lee, Ho-Jin;Kim, Ki-Baik;Koh, Chang-Seop;Lee, Soo-Hoon;Hong, Gye-Won
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.310-314
    • /
    • 1999
  • A prototype of Flywheel Energy Storage System with high Tc superconducting bearings was fabricated and tested to verify its applicability for the energy industry. The moment of inertia of assembled wheel with rotor magnets is about 1.072${\times}$10$^{-1}$ Kg-m$^2$. The wheel was designed to withstand its integrity up to the rotation speed of 20,000 rpm. YBCO bulk superconductors prepared by seed growth method were used as bearing to levitate and stabilize the rotating wheel. High speed rotation of the flywheel without mechanical contact was achieved by using specially designed Halbach type motor. The flywheel system showed very high stability during test operation performed up to the speed of about 10,000rpm. The energy loss measured by free decay test performed between 9,300 rpm and 7,000 rpm was calculated as about 45 W.

  • PDF

Prediction of the Penetration Energy for Composite Laminates Subjected to High-velocity Impact Using the Static Perforation Test (정적압입 관통실험을 이용한 복합재 적층판의 고속충격 관통에너지 예측)

  • You, Won-Young;Lee, Seokje;Kim, In-Gul;Kim, Jong-Heon
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.147-153
    • /
    • 2012
  • In this paper, static perforation tests are conducted to predict the penetration energy for the composite laminates subjected to high velocity impact. Three methods are used to analyze the perforation energy accurately. The first method is to select the perforation point using the AE sensor signal energy, the second method is to retest the tested specimen and use the difference between initial and retested perforation energy, and the third method is to select the perforation point based on the maximum loading point in the retested load-displacement curve of the tested specimen. The predicted perforation energy results are presented and verified by comparing with those by the high velocity tests.

Output Characteristics of Parallel or Serially Connected Helical Magneto-Cumulative Generators (병렬 또는 직렬로 결합한 나선형 자장압축발전기의 출력특성 분석)

  • Kuk Jeong-Hyeon;Lee Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.647-657
    • /
    • 2004
  • Helical magneto-cumulative generator(HMCG)s are very useful devices in suppling pulsed high current to inductance loads. To apply fast high voltage pulses to high impedance loads, high current outputs of HMCGs are required to be conditioned to higher voltages by using various pulse components such as opening/closing switches and pulse transformer. In this paper, stepping with the trends of requirements for ever-increasing energy in pulsed power applications coupling methods is investigated to obtain higher output energy by connecting several HMCGs in series or parallel way. The coil dimension of HMCGs used in series or parallel connections was 50 mm in diameter and 150 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and peak voltage of load were achieved from the serially connected four-barrel HMCG system. They were 68 and 34 kV, respectively, when the initial energy of 0.36 kJ was supplied into that system with the load of 0.4 μH. Within the tested range of inductance ratio, energy amplification ratio was found to be highly dependent on the inductance ratio of serial- and parallel-connected HMCG systems to load, which to be optimal around 500 was turned out. The experimental results showed that the output energy and voltage of load are controlled by connecting HMCGs in series or parallel.

A Study on the Atomization Characteristics of the Ultrasonic-Energy-Irradiation High Viscosity Biodiesel Blended Fuel (초음파 에너지 조사 고 점도 바이오디젤 혼합연료의 미립화 특성에 관한 연구)

  • Song Yong-Seek;Yang In-Kwon;Kim Bong-Seock;Ryu Jung-In
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.235-241
    • /
    • 2004
  • This experiment was undertaken to investigate the atomization characteristics of the high viscosity biodiesel blended fuel and ultrasonic energy irradiation one. Test fuels were conventional diesel fuel and biodiesel one. We compared to the characteristics of viscosity and surface tension, SMD between high viscosity biodiesel blended fuel and ultrasonic energy irradiation one. Sauter mean diameter was measured under the variation of the spray distance. Viscosity and surface tension were measured under the variation of the time trace. To measure the droplet size, we used the Malvern system 2600c. Droplet size distribution was analyzed from the result data of Malvern system. Through this experiment, we found that the condition of the ultrasonic energy irradiation situation had smaller Sauter mean diameter of droplet, viscosity and surface tension than those of the conventional situation.

Two-dimensional Numerical Simulation of a Pulsed Heat Source High Temperature Inert Gas Plasma MHD Electrical Power Generator

  • Matsumoto, Masaharu;Murakami, Tomoyuki;Okuno, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.589-596
    • /
    • 2008
  • Performance of a pulsed heat source high temperature inert gas plasma MHD electrical power generator, which can be one of the candidates of space-based laser-to-electrical power converter, is examined by a time dependent two dimensional numerical simulation. In the present MHD generator, the inert gas is assumed to be ideally heated to about $10^4K$ pulsed-likely within short time(${\sim}1{\mu}s$) in a stagnant energy input volume, and the energy of high temperature inert gas is converted to the electricity with the medium of pure inert gas plasma without seeding. The numerical simulation results show that an enthalpy extraction ratio(=electrical output energy/pulsed heat energy) of several tens of % can be achieved, which is the same level as the conventional seeded non-equilibrium plasma MHD generator. Although there still exist many phenomena to be clarified and many problems to be overcome in order to realize the system, the pulsed heat source high temperature inert gas MHD generator is surely worth examining in more detail.

  • PDF

Basic Study on Geothermal System Application Possibility of a Detached House (단독주택의 지열시스템 적용 가능성에 대한 기초연구)

  • Shin, Hee-Il;Jang, Tea-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.794-800
    • /
    • 2008
  • Due to high oil prices and global warming problems, researching an alternative energy source and decreasing the energy usage will be the key in the future. Unlike other alternative energy sources, geothermal energy is less dependent on the surrounding environment. Geothermal energy is the ideal energy source for buildings due to the simple and space saving installation. The system is semi permanent once it is installed and this will help reduce the energy usage in controlling the climate in buildings. Geothermal energy does not emit carbon dioxide and other gases that are harmful to the environment. Therefore geothermal energy will be the key in solving high oil prices and a decrease in fossil fuels by applying the geothermal energy system to detached house to counter future energy crisis.

  • PDF

Energy Consumption Characteristics and Policy Directions According to Apartment Complex Type in Incheon Metropolitan City (초고층과 일반 아파트 단지의 에너지 소비 특성과 정책방향 연구 - 인천지역 아파트 단지의 전기 및 가스 사용량을 중심으로)

  • Rhee, Bum-Hun;Chang, Dong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.285-290
    • /
    • 2019
  • This study aims to compare the energy consumption characteristics of high-rise and general apartments and propose policy implications in Incheon City where high-rise apartments are planned. The method of analysis is to select the cases, to conduct field survey, drawing review, analysis of Electric Architectural administration Information System. The study derived the current status of energy consumption in high-rise and general apartment complexes located in the same region, Yeonsu-gu Incheon City, and performed comparative analysis on their characteristics. First, electrical energy in the high-rise apartment complexes was consumed excessively, by 1.63 to 2.5 times more than that of the general apartment complexes. Second, the gas energy usage in the high-rise apartment complexes was higher than that of the general complexes, by 1.09 to 1.2 times. Third, the energy consumption per unit area in the high-rises was also higher, by 1.042 to 1.3 times. As individual elements such as incomes, living standards, and life patterns of the residents affect energy consumption, the high-rise apartment complex consumed more energy per unit area than the general apartment complex did. However, this study did not consider the elements of energy expenditure and satisfaction level, which are the limitations of this research.

SVM-based Energy-Efficient scheduling on Heterogeneous Multi-Core Mobile Devices (비대칭 멀티코어 모바일 단말에서 SVM 기반 저전력 스케줄링 기법)

  • Min-Ho, Han;Young-Bae, Ko;Sung-Hwa, Lim
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.6
    • /
    • pp.69-75
    • /
    • 2022
  • We propose energy-efficient scheduling considering real-time constraints and energy efficiency in smart mobile with heterogeneous multi-core structure. Recently, high-performance applications such as VR, AR, and 3D game require real-time and high-level processings. The big.LITTLE architecture is applied to smart mobiles devices for high performance and high energy efficiency. However, there is a problem that the energy saving effect is reduced because LITTLE cores are not properly utilized. This paper proposes a heterogeneous multi-core assignment technique that improves real-time performance and high energy efficiency with big.LITTLE architecture. Our proposed method optimizes the energy consumption and the execution time by predicting the actual task execution time using SVM (Support Vector Machine). Experiments on an off-the-shelf smartphone show that the proposed method reduces energy consumption while ensuring the similar execution time to legacy schemes.

Photoinhibition Induced Alterations in Energy Transfer Process in Phycobilisomes of PS II in the Cyanobacterium, Spirulina platensis

  • Kumar, Duvvuri Prasanna;Murthy, Sistla D.S.
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.644-648
    • /
    • 2007
  • Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 ${\mu}mol$ photons $m^{-2}s^{-1}$) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 ${\mu}mol$ photons $m^{-2}s^{-1}$) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 ${\mu}mol$ photons $m^{-2}s^{-1}$ caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.

A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility (수소생산시설에서의 수소폭발의 안전성평가 방법론 연구)

  • Jae, Moo-Sung;Jun, Gun-Hyo;Lee, Hyun-Woo;Lee, Won-Jae;Han, Seok-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.239-247
    • /
    • 2008
  • Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In that case of hydrogen release, there lies a danger of explosion. However, from the point of thermal-hydraulics view, the long distance of them makes lower efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy are researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor are evaluated and classified by detonation volume and distance. Also based on standard safety criteria which is value of $1{\times}10^{-6}$, safety distance between the very high temperature gas cooled reactor and the hydrogen production facility is calculated.