• 제목/요약/키워드: High efficiency removal

검색결과 1,361건 처리시간 0.03초

A new viewpoint of lime/mineral dissolved solution for removal of phosphorus and the corresponding mechanism in wastewater

  • C.C. Hung;T. Nguyen;C.Y. Hsieh;M. Nasir
    • Membrane and Water Treatment
    • /
    • 제15권3호
    • /
    • pp.117-130
    • /
    • 2024
  • The possibility of using lime/mineral solvent solutions has been investigated to effectively remove T-P from wastewater. The lime solvent solution showed an initial T-P removal efficiency of about 90% compared to the less efficient mineral solvent solution removal. High pH and dissolved Ca2+ can form hydroxyapatite minerals (Ca5(PO4)3(OH) or Ca10(PO4)6(OH)2 and can also remove SS and COD from wastewater. Feldspar dissolution solution can be reused twice because the Ca limited sample content provided, but further research is needed to discover other influencing parameters that control the T-P removal efficiency in real wastewater. Because it plays an important role of alkalinity in T-P removal, the success rate is limited. In practical applications, it is obtained according to the pH value wastewater in the environment. The results obtained in this study can highlight new insights on the use of limestone/dissolved mineral solutions to control T-P in wastewater, instead of directly using commercial chemical agents that can produce large amounts of unreacted chemical sludge.

상분리 혐기성공정에 의한 양돈폐수로부터 고순도 메탄회수 (Recovery of High-Purity Methane from Piggery Wastewater in the Phase-Separated Anaerobic Process)

  • 정진영;정윤철;유창봉
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.210-213
    • /
    • 2008
  • The purpose of this study is to investigate the performances of organic removal and methane recovery in the full scale two-phase anaerobic system. The full scale two-phase anaerobic system was consists of an acidogenic ABR (Anaerobic Baffled Reactor) and a methanognic UASB (Upflow Anaerobic Sludge Blanket) reactor. The volume of acidogenic and methanogenic reactors is designed to 28.3 $m^3$ and 75.3 $m^3$. The two-phase anaerobic system represented 60-82% of COD removal efficiency when the influent COD concentration was in the range of 7,150 to 16,270 mg/L after screening (average concentration is 10,280 mg/L). After steady-state, the effluent COD concentration in the methanogenic reactor showed 2,740 $\pm$ 330 mg/L by representing average COD removal efficiency was 71.4 $\pm$ 8.1% when the operating temperature was in the range of 19-32$^{\circ}C$. The effluent SCOD concentration was in the range of 2,000-3,000 mg/L at the steady state while the volatile fatty concentration was not detected in the effluent. Meanwhile, the COD removal efficiency in the acidogenic reactor showed less than 5%. The acidogenic reactor played key roles to reduce a shock-loading when periodic shock loading was applied and to acidify influent organics. Due to the high concentration of alkalinity and high pH in the effluent of the methanogenic reactor, over 80% of methane in the biogas was produced consistently. More than 70 % of methane was recovered from theoretical methane production of TCOD removed in this research. The produced gas can be directly used as a heat source to increase the reactor temperature.

  • PDF

Research Progress of Antibiotic Pollution and Adsorption Materials in Aquatic environment

  • Zheng, Kun;Deng, ChengXun;Deng, Xu;Yu, ZhiMin
    • 도시과학
    • /
    • 제8권2호
    • /
    • pp.1-5
    • /
    • 2019
  • China is the great powers of use and production of antibiotics.The current process of sewage treatment plants can not effectively remove antibiotics in water. Chinese scholars have detected different kinds of antibiotics in major waters of the country, which have potential harm to human body. Among all kinds of antibiotic treatment technologies, adsorption removal technology has the advantages of simple operation, low cost and high removal efficiency. It is a widely concerned antibiotic removal technology. However, at present, few materials have been put into practical application, and more materials with low cost and high efficiency need to be found. Different adsorptive materials have different adsorptivity to different antibiotics. For different antibiotics, different adsorptive materials can be integrated in the future, and the theory can be extended to application.

질산화 반응조에서 유기물 부하에 따른 암모니아 제거 특성 (Characteristics of $NH_3$-N removal in nitrification reactor according to organic loading rate)

  • 강민구;김금용;김승하;류홍덕;이상일
    • 환경위생공학
    • /
    • 제24권3호
    • /
    • pp.7-15
    • /
    • 2009
  • 본 연구에서는 DEPHANOX공정을 변형한 두 개의 질산화 반응조를 둔 M-DEPHANOX 공정과 기존 변형된 질산화 반응조를 RBC로 대체한 형태로 단일 질산화 반응조로 운전된 M-DEPHANOX 공정을 운전하였다. 그리고 두 공정의 제거율을 비교하기 위하여 질소, 인 및 유기물 제거율과 질산화 반응조의 유기물 부하에 따른 $NH_3$-N 제거율을 조사하였다. 연구결과 $NH_3$-N 제거율은 M-DEPHANOX공정이 91.8%, M-eBNR 공정은 96.9%로서 두 공정 모두 높게 나타났다. TCOD와 SCOD 제거율은 M-DEPHANOX공정은 84.1와 78.2%, M-eBNR공정은 83.4%와 75.6%이었다. 또한 유기물이 $NH_3$-N 제거율에 미치는 영향은 M-eBNR 공정의 질산화 반응조에서는 1차 침전조에서 거의 나타나지 않았다. M-eBNR 공정의 $NH_3$-N 제거율은 도시하수의 유입성상이 달라지더라도 안정적으로 유지되었다.

산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(II) -유기물 충격 부하가 미생물 성장에 미치는 영향- (A Study on an Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(II) -Effect of Organic Shock Loading Rate on Biomass Characteristics-)

  • 안갑환;박영식;최윤찬;김동석;송승구
    • 한국환경과학회지
    • /
    • 제2권4호
    • /
    • pp.325-330
    • /
    • 1993
  • A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 cm/sec and temperature, 22$\pm$$1^{\circ}C$, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/m$^3$ㆍday, respectively. Within the F/M ratio ranged 0.4 to 2.0 kgCOD/kgVSSㆍday, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 kgCOD/kgVSSㆍday, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSSㆍday. The average biomass concentrations were 7800, 14950 and 27532 mg/l on the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/$\textrm{m}^3$ㆍday, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.

  • PDF

부유부상 공정의 마이크로 스틱키 제거 효율에 관한 연구 (Removal Efficiency of Microstickies by Flotation Process)

  • 박일;이학래
    • 펄프종이기술
    • /
    • 제37권3호
    • /
    • pp.1-8
    • /
    • 2005
  • Increase in the utilization rate of recycled paper and closing level of papermaking system increased the problem associated with stickies that include decrease in process runnability and product quality. It is required to establish a process for removing the micro stickies to solve the problems associated with stickies. In this study, the application of flotation process as a method to remove micro stickies was examined. Model micro stickies (MMS) were prepared using microcrystalline cellulose (MCC) and pressure sensitive adhesives (PSA), and the influence of three nonionic surfactants on the removal efficiency of MMS from flotation process was examined. Also the effect of surfactants on the deposition of micro stickies that remaining in the papermaking wet end onto wire was examined. Removal efficiency of MMS by flotation was increased when the proportion of nonionic surfactant with propylene oxide (PO) type hydrophilic tail was increased and stock pH was 7. It was suggested that this nonionic surfactant minimized the increase of surface energy of hydrophobic MMS. The MMS with high hydrophobicity remaining in the papermaking system, however, would cause more serious deposition problems on papermaking wet end. Therefore, it is of great importance to increase the removal efficiency of MMS in flotation process for the prevention of papermaking system contamination caused by stickies deposition.

표면개질된 영가철 나노입자를 이용한 질산성 질소 제거율 향상에 대한 연구 (A Study on Enhancement of Nitrate Removal Efficiency using Surface-Modified Zero-Valent Iron Nanoparticles)

  • 임태숙;조윤철;조장환;최상일
    • 한국환경과학회지
    • /
    • 제25권4호
    • /
    • pp.517-524
    • /
    • 2016
  • In order to treat groundwater containing high levels of nitrate, nitrate reduction by nano sized zero-valent iron (nZVI) was studied using batch experiments. Compared to nitrate removal efficiencies at different mass ratios of $nitrate/Fe^0$, the removal efficiency at the mass ratio of 0.02% was the highest(54.59%). To enhance nitrate removal efficiency, surface modification of nZVI was performed using metallic catalysis such as Pd, Ni and Cu. Nitrate removal efficiency by Cu-nZVI (at $catalyst/Fe^0$ mass ratio of 0.1%) was 66.34%. It showed that the removal efficiency of Cu-nZVI was greater than that of the other catalysts. The observed rate constant ($k_{obs}$) of nitrate reduction by Cu-nZVI was estimated to $0.7501min^{-1}$ at the Cu/Fe mass ratio of 0.1%. On the other hand, TEM images showed that the average particle sizes of synthetic nZVI and Cu-nZVI were 40~60 and 80~100 nm, respectively. The results imply that catalyst effects may be more important than particle size effects in the enhancement of nitrate reduction by nZVI.

축산폐수의 후처리공정으로서 SBR 적용시 운전인자에 따른 질소와 인의 제거특성에 관한 연구 (A Study on the Removal of Nitrogen and Phosphorus by Operation Mode for Livestock Wastewater Treatment Post-process Using SBR)

  • 최건열;이영신
    • 한국환경보건학회지
    • /
    • 제35권3호
    • /
    • pp.214-219
    • /
    • 2009
  • This study examined the removal efficiency of the nitrogen and phosphorus in order to compensate for the combined process of ATAD(Autothermal Thermophilic Aaerobic Digestion) and EGSB(Expended Granular Sludge Bed), which are treatment methods for livestock wastewater, by introducing SBR(Sequencing Batch Reactor) as post-treatment process. The analysis on the treatment efficiency of each operation mode showed that, in the case of T-N, the treatment efficiency were 67.1% and 74.2% for Run-1 and Run-2, respectively, and in the case of T-P, the values were 71.2 and 74.1, respectively, which are indicating that the treatment efficacy is higher in the condition of Run-1, in which the time period of Anoxic and Aerobic segments were increased. In addition, the result of analyzing removal characteristics of nitrogen and phosphorus by Influx load showed that removal efficiency of nitrogen was better in the case of high influx load than in the case of low influx load. Regardless of Influx load, phosphorus showed constant influx concentration, so that removal efficiency of phosphorus was influenced littler by Influx load than that of nitrogen. This study also fed methanol as an external carbon source and performed experiment to induce denitrification under anoxic condition by using nitrate among nitrogen compounds of SBR reactor, and the results showed that intermittent feeding was more effective in Nitrogen Removal than composite feeding.

Acetaldehyde폐수의 활성오이법에 의한 기질제거조건 (Substrate Removal Condition in Activated Sludge Process of Wastewater from Acetaldehyde Manufacturing Plant)

  • 금영일;금두조
    • 환경위생공학
    • /
    • 제8권1호
    • /
    • pp.107-116
    • /
    • 1993
  • This study is conducted to investigate treatability by activated sludge process for wastewater from acetaldehyde manufacturing plant. The optimum hydraulic retention time in aeration tank for removal of high strength substrate were measured. The removal efficiency were checked out by hydraulic retention time : 35hr., 40hr. and 45hr., respectively. $COD_{Cr}$, like substances were removed in all hydraulic retention time zone directed for efficiency, but non-biodegradable substances were remained. $COD_{Cr}$ biomass loading was 0.81kg $COD_{Cr}/kgMLVSS$ . day at 35hr. of retention time, 0.34 kg$COD_{Cr}$/kg MLVSS . day at 40hr., and O.l9kg$COD_Cr$/kgMLVSS . day at 45hr. And the mean $COD_{Cr}$, removal efficiency was 65.5%, 81.6% and 83.0%, respectively. And also $COD_{Cr}$, volume loading was 1.01kg$COD_{Cr}/m^3$ day, 0.87kg$COD_{Cr}/m^3$ - day, and 0.79kg$COD_{Cr}/m^3{\cdot }$day, respectively. The basic design parameter obtained is as fallows. The value of Specific substrate removal rate coefficient (k), Yield coefficient(Y) and Decay coefficient($k_d$) was $0.0013day^{-1}$, $0.505kgMLVSS/kgCOD_{Cr}$ and $0.040day^{-1}$, respectively.

  • PDF

Application of Biofilter Using Fibril-form Matrix for Odor Gas Removal

  • Lee, Gwang-Yeon;Jeong, Gwi-Taek;Lee, Kyoung-Min;Snuwoo, Chang-Shin;Lee, Woo-Tae;Cha, Jin-Myoung;Jang, Young-Seon;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2005년도 생물공학의 동향(XVI)
    • /
    • pp.247-251
    • /
    • 2005
  • This research was performed for developing of biological treatment process of odor gas such as MEK, $H_{2}S$, and toluene, which is generated from the food waste recycling process. To establish the operational conditions of odor gas removal by small-scale biofiltration equipment, it was continuously operated by using toluene as a treating odor object. When the odor treating microorganisms were adhered to fibril form biofilter, high removal efficiency over 93% was obtained by biofilm formation. At 400 ppm of inlet odor gas concentration and 10 sec of retention time, the removal efficiency was 76% and 93% in 1st stage reactor and 2nd stage reactor, respectively. However, the removal efficiency remained over 97% at the operational conditions above 15 sec of retention time.

  • PDF