• Title/Summary/Keyword: High efficiency level

Search Result 1,879, Processing Time 0.032 seconds

A comparative analysis of rumen pH, milk production characteristics, and blood metabolites of Holstein cattle fed different forage levels for the establishment of objective indicators of the animal welfare certification standard

  • Baek, Dong Jin;Kwon, Hyoun Chul;Mun, Ah Lyum;Lim, Joo Ri;Park, Sung Won;Han, Jin Soo
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.147-152
    • /
    • 2022
  • Objective: This study was conducted to obtain an objective index that can be quantified and used for establishing an animal welfare certification standard in Korea. For this purpose rumen pH, ruminating time, milk yield, milk quality, and blood components of cows reared in farms feeding high forage level (90%) and farms feeding low forage level (40%) were compared. Methods: Data on rumen pH, rumination time, milk yield, milk fat ratio, milk protein ratio, and blood metabolism were collected from 12 heads from a welfare farm (forage rate 88.5%) and 13 heads from a conventional farm (forage rate 34.5%) for three days in October 2019. Results: The rumination time was longer in cattle on the welfare farm than on the conventional farm (p<0.01), but ruminal pH fluctuation was greater in the cattle on conventional farm than the welfare farm (p<0.01). Conventional farms with a high ratio of concentrated feed were higher in average daily milk yield than welfare farms, but milk fat and milk production efficiency (milk fat and milk protein corrected milk/total digestible nutrients) was higher in cattle on welfare farms. Blood test results showed a normal range for both farm types, but concentrations of total cholesterol and non-esterified fatty acid were significantly higher in cows from conventional farms with a high milk yield (p<0.01). Conclusion: The results of this study confirmed that cows on the animal welfare farm with a high percentage of grass feed had higher milk production efficiency with healthier rumen pH and blood metabolism parameters compared to those on the conventional farm.

A Study on the Physical Characteristics of Concrete using Multi-Component Blended Binder According to Warter Reduction Efficiency of Warter Reduction Agent (감수제의 감수 효율에 따른 다성분계 결합재를 사용한 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Kim, Kyung-Hwan;Oh, Sung-Rok;Choi, Byung-Keol;Choi, Yun-Wang
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.559-568
    • /
    • 2015
  • In this study, multi-component blended concrete mix with fly ash and ground granulated blast furnace slag according to 3 level of type of warter reduction agent (type of 0%, 8% and 16%) and 3 level of water-binder ratio (40%, 45% and 50%) was prepared for evaluation of effect of physical characteristics of concrete using multi-component blended binder according to warter reduction efficiency of warter reduction agent. In addition, concrete mix was carried out repetition test of three times in order to secure the reliability. As a result, compressive strength according to type of warter reduction agent was found that difference of strength was about 20% occurred, warter reduction efficiency of warter reduction agent was showed that a great influence on qualities of concrete. Therefore, reflected the effect of warter reduction efficiency of warter reduction agent, prediction model equations of compressive strength for multi-component blended concrete was proposed, it was found that more than 90% of the high correlation.

A Word Dictionary Structure for the Postprocessing of Hangul Recognition (한글인식 후처리용 단어사전의 기억구조)

  • ;Yoshinao Aoki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.9
    • /
    • pp.1702-1709
    • /
    • 1994
  • In the postprocessing of Hangul recognition system, the storage structure of contextual information is an important matter for the recognition rate and speed of the entire system. Trie in general is used to represent the context as word dictionary, but the memory space efficiency of the structure is low. Therefore we propose a new structure for word dictionary that has better space efficiency and the equivalent merits of trie. Because Hangul is a compound language, the language can be represented by phonemes or by characters. In the representation by phonemes(P-mode) the retrieval is fast, but the space efficiency is low. In the representation by characters(C-mode) the space efficiency is high, but the retrieval is slow. In this paper the two representation methods are combined to form a hybrid representation(H-mode). At first an optimal level for the combination is selected by two characteristic curves of node utilization and dispersion. Then the input words are represented with trie structure by P-mode from the first to the optimal level, and the rest are represented with sequentially linked list structure by C-mode. The experimental results for the six kinds of word set show that the proposed structure is more efficient. This result is based on the fact that the retrieval for H-mode is as fast as P-mode and the space efficiency is as good as C-mode.

  • PDF

Optimal Design of RSOFC System Coupled with Waste Steam Using Ejector for Fuel Recirculation (연료 재순환 이젝터를 이용한 연료전지-폐기물 기반 가역 고체 산화물 연료전지의 최적 설계)

  • GIAP, VAN-TIEN;LEE, YOUNG DUK;KIM, YOUNG SANG;QUACH, THAI QUYEN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.4
    • /
    • pp.303-311
    • /
    • 2019
  • Reversible solid oxide fuel cell (RSOFC) has become a prospective device for energy storage and hydrogen production. Many studies have been conducted around the world focusing on system efficiency improvement and realization. The system should have not only high efficiency but also a certain level of simplicity for stable operation. External waste steam utilization was proved to remarkably increase the efficiency at solid oxide electrolysis system. In this study, RSOFC system coupled with waste steam was proposed and optimized in term of simplicity and efficiency. Ejector for fuel recirculation is selected due to its simple design and high stability. Three system configurations using ejector for fuel recirculation were investigated for performance of design condition. In parametric study, the system efficiencies at different current density were analyzed. The system configurations were simulated using validated lumped model in EBSILON(R) program. The system components, balance of plants, were designed to work in both electrolysis and fuel cell modes, and their off-design characteristics were taken into account. The base case calculation shows that, the system with suction pump results in slightly lower efficiency but stack can be operated more stable with same inlet pressure of fuel and air electrode.

Design of the Computer Generated Holographic Diffuser (컴퓨터 생성 홀로그래픽 디퓨저의 설계)

  • Choi, Kyong-Sik;Yoon, Jin-Seon;Kim, Nam
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.357-366
    • /
    • 2001
  • In this paper, computer generated holographic diffuser with high diffraction efficiency and uniformity was designed by the modified iterative Fourier transform algorithm. Newly proposed method to design a CGHD is to flip and to combine BPHs or MPHs, so it makes the computation time decreased and it makes the reconstructed signal area enlarged. The designed sixteen phase holographic diffuser had the high diffraction efficiency of 85.20%, the uniformity of 2.43%, and the average signal to noise ratio of 18.97[㏈]. Also, we compared the CGHD with a 128 level pseudo random phase diffuser about the diffraction efficiency and the uniformity. The proposed diffuser can be provided good performance for a holographic diffuser and a next-generation display device.

  • PDF

Comparison of Traction Motor design and characteristics for battery driven hybrid tram (무가선 트램용 추진 전동기 설계 및 특성 비교)

  • Ham, Sang-Hwan;Kim, Kwang-Soo;Kim, Mi-Jung;Lee, Hyung-Woo;Lee, Ju
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1383-1388
    • /
    • 2010
  • The latest generation of tram is low-floor design, various nations in europe and japan have developed battery driven hybrid trams that combine battery and wiring. Battery driven tram system is achieved by contactless power supply system, thus system is needed high efficiency, high power and low weight traction motor for maximization of energy efficiency. Research from abroad is still in induction motor(IM) application, and it is not meet the efficiency and the power per unit volume in IPMSM. In this paper, we design compare IM and IPMSM to apply battery driven tram, and then compare these motors. To design the motor, we estimate the loading condition at first. Loading condition includes rolling resistance, air-drag resistance, and slope resistance. Based on the loading condition by estimation, we determine the power and compute rated voltage and rated current. In this paper, voltage is limited by battery voltage level. As a result, volume about IM is 1.98 times bigger than IPMSM under same condition. Even though IPMSM is bigger than IM in power density per volume, we consider more factors for actual application because there are demagnetization of permanent magnet in IPMSM and so on by external environment conditions.

  • PDF

Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions (민코 아역청탄의 순산소 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong;Jang, Seok-Won;Kim, Sung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs

  • Do, Thuan Cong;Kim, Gwang Bok;Kim, Cheol Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.10
    • /
    • pp.1-9
    • /
    • 2018
  • Modern graphics processing units (GPUs) have become one of the most attractive platforms in exploiting high thread level parallelism with the support of new programming tools such as CUDA and OpenCL. Recent GPUs has applied cache hierarchy to support irregular memory access patterns; however, L1 data cache (L1D) exhibits poor efficiency in the GPU. This paper shows that the L1D does not always positively affect the applications in terms of performance and energy efficiency for the GPU. The performance of the GPU is even harmed by using the L1D for lots of applications. Our proposed technique exploits the characteristics of the currently-executed applications to predict the performance impact of the L1D on the GPU and then decides whether to continuously use the cache for the application or not. Our experimental results show that the proposed technique improves the GPU performance by 9.4% and saves up to 52.1% of the power consumption in the L1D.

Hybrid ZVS Converter with a Wide ZVS Range and a Low Circulating Current

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.652-659
    • /
    • 2015
  • This paper presents a new hybrid soft switching dc-dc converter with a low circulating current and high circuit efficiency. The proposed hybrid converter includes two sub-converters sharing two power switches. One is a three-level PWM converter and the other is a LLC converter. The LLC converter and the three-level converter share the lagging-leg switches and extend the zero-voltage switching (ZVS) range of the lagging-leg switches from nearly zero to full load since the LLC converter can be operated at fsw (switching frequency) $\approx$ fr (series resonant frequency). A passive snubber is used on the secondary side of the three-level converter to decrease the circulating current on the primary side, especially at high input voltage and full load conditions. Thus, the conduction losses due to the circulating current are reduced. The output sides of the two converters are connected in series. Energy can be transferred from the input voltage to the output load within the whole switching period. Finally, the effectiveness of the proposed converter is verified by experiments with a 1.44kW prototype circuit.

Subsection Synchronous Current Harmonic Minimum Pulse Width Modulation for ANPC-5L Inverter

  • Feng, Jiuyi;Song, Wenxiang;Xu, Yuan;Wang, Fei
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1872-1882
    • /
    • 2017
  • Medium voltage drive systems driven by high-power multi-level inverters operating at low switching frequency can reduce the switching losses of the power device and increase the output power. Employing subsection synchronous current harmonic minimum pulse width modulation (CHMPWM) technique can maintain the total harmonic distortion of current at a very low level. It can also reduce the losses of the system, improve the system control performance and increase the efficiency of DC-link voltage accordingly. This paper proposes a subsection synchronous CHMPWM approach of active neutral point clamped five-level (ANPC-5L) inverter under low switching frequency operation. The subsection synchronous scheme is obtained by theoretical calculation based on the allowed maximum switching frequency. The genetic algorithm (GA) is adopted to get the high-precision initial values. So the expected switching angles can be achieved with the help of sequential quadratic programming (SQP) algorithm. The selection principle of multiple sets of the switching angles is also presented. Finally, the validity of the theoretical analysis and the superiority of the CHMPWM are verified through both the simulation results and experimental results.