• Title/Summary/Keyword: High dielectric factor

Search Result 223, Processing Time 0.025 seconds

Numerical Method for Computing the Resonant Frequencies and Q-factor in Microwave Dielectric Resonator

  • Kim, Nam-young;Yoo, Hojoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.245-248
    • /
    • 1997
  • The dielectric resonators(DRs) with dielectric properties are widely used in microwave integrated circuit(MICs) and monolithic microwave integrated circuits(MMICS). The variational method as numerical simulation scheme would be applied to calculate the resonant frequencies(fr) and Q-factors of microwave dielectric resonators. The dielectric resonator with a cylindrical “puck” structure of high dielectric material is modeled in this simulation. The parameters, such as the diameter, the height, and the dielectric constant of dielectric resonator, would determine the resonant frequency and the Q-factor. The relationship between these parameters would effect each other to evaluate the approximate resonant frequency. This simulation method by the variational formula is very effective to calculate fr, and Q-factor. in high frequency microwave dielectric resonator The error rate of the simulation results and the measured results would be considered to design the microwave dielectric resonators.

  • PDF

Development of the Dielectric sensor for the Cure monitoring of the high temperature Composites (고온 복합재료의 경화 모니터링을 위한 유전센서의 개발)

  • 김일영;최진경;최진호;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.22-28
    • /
    • 2000
  • The fiber reinforced composite materials is widely used in aircraft, space structures and robot arms because of high specific strength and high specific modulus. The on-line cure monitoring during the cure process of the composite materials has become an important research area for the better quality and productivity. In this paper, the dielectric circuit of the wheatstone bridge type for measuring the dissipation factor was designed and manufactured. Also, the dielectric sensor for the cure monitoring of the high temperature composites was developed. The residual thermal stresses of the dielectric sensor were analyzed by the finite element method and its dielectric characteristics under high temperature were evaluated. The on-line cure monitoring of the BMI resin was performed using the wheatstone bridge type circuit and developed high-temperature dielectric sensor.

  • PDF

Calculation of Field Enhancement Factor in CNT-Cathodes Dependence on Dielectric Constant of Bonding Materials

  • Kim, Tae-Sik;Shin, Heo-Young;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1092-1095
    • /
    • 2005
  • The effect of the dielectric constant (${\varepsilon}$) of bonding materials in screen-printed carbon nanotube cathode on field enhancement factor was investigated using the ANSYS software for high-efficient CNT-cathodes. The field enhancement factor increased with decreasing the dielectric constant and reaching a maximum value when the dielectric constant is 1, the value for a vacuum. This indicates that the best bonding materials for screen-printing CNT cathodes should have a low dielectric constant and this can be used as criteria for selecting bonding materials for use in CNT pastes for high-efficient CNT-cathodes

  • PDF

Dielectric Properties of Fresh Ginseng Determined by an Open-Ended Coaxial Probe Technique (수삼의 마이크로파 유전특성)

  • Hong, Seok-In;Lee, Boo-Yong;Park, Dong-June;Oh, Seung-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.470-474
    • /
    • 1996
  • The dielectric properties, dielectric constant (${\varepsilon}‘$) and loss factor (${\varepsilon}’$), of skin and pulp of fresh ginseng were measured from $25^{\circ}C$ to $67^{\circ}C$ using an open-ended coaxial probe technique for 915 MHz and 2450 MHz. Pulp and skin had dielectric constant of $30{\sim}64$ and loss factor between 10 and 20, each variable having a respective frequency dependence typical of materials with high water content. Although the loss factor was nearly constant, the dielectric constant increased as moisture content increased. The dielectric constant of ginseng pulp increased as temperature increased (temperature ${\leq}56^{\circ}C$), but any significant differences were not found in skin dielectric properties. Penetration depth for fresh ginseng were about 2 cm at 91.5 MHz and 1cm at 2450 MHz.

  • PDF

Millimeter-wave Dielectric Ceramics of Alumina and Forsterite with High Quality factor and Low Dielectric Constant

  • Ohasto, Hitoshi;Tsunooka, Tsutomu;Ando, Minato;Ohishi, Yoshihiro;Miyauchi, Yasuharu;Kakimoto, Ken ichi
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.350-353
    • /
    • 2003
  • Millimeter-wave dielectric ceramics have been used like applications for ultrahigh speed wireless LAN because it reduces the resources of electromagnetic wave, and Intelligent Transport System (ITS) because of straight propagation wave. For millimeterwave, the dielectric ceramics with high quality factor (Q$.$f), low dielectric constant($\varepsilon$), and nearly zero temperature coefficient of resonant frequency ($\tau$) are needed. No microwave dielectric ceramics with these three properties exist except Ba(Mg$\_$1/3/Ta/sub1/3/)O$_3$ (BMT), which has a little high s: In this paper, alumina (Al$_2$O$_3$) and fosterite (Mg$_2$SiO$_4$), candidates for millimeter-wave applications, were studied with an objective to get high q$.$f and nearly zero $\tau$$\_$f/ For alumina ceramics, q$.$f more than 680,000 GHz was obtained but it was difficult to obtain nearly zero Qf. On the other hand, for forsterite ceramics, q$.$f was achieved from 10,000 GHz of commercial for sterite to 240,000 GHz of highly purified MgO and SiO$_2$ raw materials, and $\tau$$\_$f/ was reduced a few by adding TiO$_2$ with high positive $\tau$$\_$f/.

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • Lee, Kyoung-Ho;Kim, Yong-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with repsect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, $ZnWO_4$ was turned out the suitable LTCC material. $ZnWO_4$ can be sintered up to 98% of full density at $1050^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and $-70ppm/^{\circ}C$, respectively. In order to modify the dielectric properties and densification temperature, $B_{2}O_{3}$ and $V_{2}O_{5}$ were added to $ZnWO_4$. 40 mol% $B_{2}O_{3}$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to $-7.6ppm/^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of $V_{2}O_{5}$ in $ZnWO_{4}-B_{2}O_{3}$ system enhanced liquid phase sintering. 0.1 wt% $V_{2}O_{5}$ addition to the $0.6ZnWO_{4}-0.4B_{2}O_{3}$ system, reduced the sintering temperature down to $950^{\circ}C$. Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and $-21.6ppm/^{\circ}C$, respectively.

  • PDF

Sintering and Microwave Dielectric Properties of $ZnWO_4$ ($ZnWO_4$ 소결특성 및 고주파 유전특성)

  • 이경호;김용철
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.386-389
    • /
    • 2001
  • In this study, development of a new LTCC material using non-glassy system was attempted with respect to reducing the fabrication process steps and cost down. Lowering the sintering temperature can be achieved by liquid phase sintering. However, presence of liquid phases usually decrease dielectric properties, especially the quality factor. Therefore, the starting material must have quality factor as high as possible in microwave frequency range. And also, the material should have a low dielectric constant for enhancing the signal propagation speed. Regarding these factors, dielectric constants of various materials were estimated by the Clausius-Mosotti equation. Among them, ZnWO$_4$ was turned out the suitable LTCC material. ZnWO$_4$ can be sintered up to 98% of full density at 105$0^{\circ}C$ for 3 hours. It's measured dielectric constant, quality factor, and temperature coefficient of resonant frequency were 15.5, 74380GHz, and -70ppm/$^{\circ}C$, respectively In order to modify the dielectric properties and densification temperature, B$_2$O$_3$ and V$_2$O$_{5}$ were added to ZnWO$_4$. 40 mol% B$_2$O$_3$ addition reduced the dielectric constant from 15.5 to 12. And the temperature coefficient of resonant frequency was improved from -70 to -7.6ppm/$^{\circ}C$. However, sintering temperature did not change due to either lack of liquid phase or high viscosity of liquid phase. Incorporation of small amount of V$_2$O$_{5}$ in ZnWO$_4$-B$_2$O$_3$ system enhanced liquid phase sintering. 0.lwt% V$_2$O$_{5}$ addition to the 0.6ZnWO$_4$-0.4B$_2$O$_3$ system, reduced the sintering temperature down to 95$0^{\circ}C$ Dielectric constant, quality factor, and temperature coefficient of resonant frequency were 9.5, 16737GHz, and -21.6ppm/$^{\circ}C$ respectively.ively.

  • PDF

A Study on the Lightning Impulse Dielectric Characteristics of Air for the Development of Air-Insulated High Voltage Apparatuses (고전압 전력기기 개발을 위한 기중 절연파괴특성 분석에 관한 연구)

  • Nam, Seok-Ho;Kang, Hyoung-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.1005-1010
    • /
    • 2011
  • The accidents caused by dielectric instability have been increasing in power grid. It is important to enhance the dielectric reliability of a high voltage apparatus to reduce the damage from electrical hazards. To develop an electrically reliable high voltage apparatus, the experimental study on the electrical breakdown field strength is indispensable, as well as theoretical approach. In this paper, the lightning impulse breakdown characteristics considering utilization factors are studied for the establishment of insulation design criteria of an high voltage apparatus. The utilization factors are represented as the ratio of mean electric field to maximum electric field. Dielectric experiments are performed by using several kinds of sphere-plane electrode systems made of stainless steel. As a result, it is found that dielectric characteristics are affected by not only maximum electric field intensity but also utilization factors of electrode systems. The results are expected to be applicable to designing the air-insulated high voltage apparatuses.

New Density-Independent Model for Measurement of Grain Moisture Content using Microwave Techniques

  • Kim, Jong-Heon;Kim, Ki-Bok;Noh, Sang-Ha
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.72-78
    • /
    • 1997
  • A free space transmission method using standard gain horn antennas in the frequency range from 9.0 to 10.5GHz is applied to determine the dielectric properties of grain such as rough rice ,brown rice and barley. The dielectric constant and loss factor, which depend on the moisture content of the wetted grain are obtained from the measured attenuation and phase shift by vector network analyzer. The moisture content of grain varied from 11 to 25% based on this wetted condition. The measured values of dielectric constants as a function of moisture density are compared with values of those obtained using he predicted model for estimating dielectric constants of grain. The effect of density fluctuation, high is an important parameter governing the dielectric properties of grain, on the dielectric constant and loss factor is presented. A new density-independent model in terms of measured attenuation an moisture density is proposed of reducing the effects of density fluctuation on the moisture content measurement.

  • PDF

High-Tunable Capacitor Using a Multi-Layer Dielectric Thin Film for Reconfigurable RF Circuit Applications (재구성 RF 회로 응용을 위한 다층유전체 박막을 이용한 고-가변형 커패시터)

  • Lee, Young-Chul;Lee, Baek-Ju;Ko, Kyung-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1038-1043
    • /
    • 2012
  • In this work, a high tunable capacitor using a multi-layer dielectric of BZN/BST/BZN is designed and characterized for reconfigurable RF applications. By utilizing a high tunable BST ferroelectric and a low-loss BZN paraelectric thin film, a multi-layer dielectric of BZN/BST/BZN obtained a tunability of 47 % and $tan{\delta}$ of 0.005. The fabricated tunable capacitor on a quartz wafer using this multi-layer dielectric achieved a Q-factor of 10 and tunability of 60 % at 800 MHz and 15 V. Its size is $327{\times}642{\mu}m2$.