• 제목/요약/키워드: High dielectric composite

검색결과 140건 처리시간 0.031초

고강도 LTCC 소재을 위한 복합구조의 유전특성 (Dielectric Properties of Complex Microstructure for High Strength LTCC Material)

  • 김진호;황성진;성우경;김형순
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.309-309
    • /
    • 2007
  • The LTCCs (low-temperature co-fired ceramics) are very important for electronic industry to build smaller RF modules and to fulfill the necessity for miniaturization of devices in wireless communication industry. The dielectric materials with sintering temperature $T_{sint}$<$900^{\circ}C$ are required. In this study, we investigated with glass-ceramic composition, which was crystallized with two crystals. The microstructure, crystal phases, thermal and mechanical properties, and dielectric properties of the composites were investigated using FE-SEM, XRD, TG-DTA, 4-point bending strength test and LCR measurement. The starting temperature for densification of a sintered body was at $779{\sim}844^{\circ}C$ and the glass frits were formatted to the crystal phases, $CaAl_2Si_2O_8$(anorthite) and $CaMgSi_O_6$(diopside), at sintering temperature. The sintered bodies exhibited applicable dielectric properties, namely 6-9 for ${\varepsilon}_r$. The results suggest that the glass-ceramic composite would be potentially possible to application of low dielectric L TCC materials.

  • PDF

나노 충진제에 따른 에폭시 나노 컴퍼지트의 절연파괴강도 특성 (Dielectric Breakdown Characteristics Depending on The Nano Filler of Epoxy Nano-composites)

  • 박태학;백승학;이동건;박홍규;정인범;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.92-92
    • /
    • 2010
  • In this paper, the test is performed on MgO, which is used as a filler in epoxy additives, respectively (0, 1.0, 3.0, 5.0, 7.0, 10 [wt%]) for HVDC(high voltage direct current) submarine cable insulating material to improve electrical properties of epoxy resin in high temperature. The breakdown strength due to increasing amount of filler increased to 5.0 [wt%] by the effects of the Coulomb blockade. However, it is confirmed that strength of dielectric breakdown decreased because the filler functioned as impurities and affected the breakdown when filler additive exceeded by 5.0 [wt%] or more. We have found that the highest dielectric breakdown strength of specimen added 5.0 wt% at $25^{\circ}C$, and is more increased approximately 13.7 [%] than virgin specimen.

  • PDF

내장형 capacitor를 위한 LCP와 $BaTiO_3-SrTiO_3$ 복합재의 유전특성 (Dielectric Properties of LCP and $BaTiO_3-SrTiO_3$ Composites for Embedded Matching Capacitors)

  • 김진철;윤상준;윤금희;오준록
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.60-60
    • /
    • 2008
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)$BaTiO_3-xSrTiO_3$(BST) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrates. The dielectric properties of these composites are varied with volume fraction of BST and ratios of BT/ST. Dielectric constants are in the range of 3~28. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.4 and 50vol% BST, the dieletric constant and Q-value are 27 and 300, respectively. And more TCC is -116~145ppm/$^{\circ}C$ in the temperature range of -55~$125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

내장형 capacitor를 위한 LCP와 $CaTiO_3-LaAlO_3$ 복합재의 유전특성 (Dielectric Properties of Liquid Crystalline Polymers and $CaTiO_3-LaAlO_3$ Composites for Embedded Matching Capacitors)

  • 김진철;오준록
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.232-233
    • /
    • 2007
  • We manufactured Liquid Crystal Polymer (LCP) and (1-x)CaTiO3-xLaAlO3 (CT-LA) ceramic composites and investigated dielectric properties to use as embedded capacitor in printed circuit boards and replace LTCC substrate. The dielectric properties of these composites are varied with volume fraction of CT-LA and ratios of CT/LA. Dielectric constants are in the range of 3~15. In addition, we could get low TCC and High Q value that could not achieve in other ceramic-polymer composites. Especially, in composite with x=0.01 and 30 vol% CT-LA, the dieletric constant and Q-value are 10 and 200, respectively. And more TCC is $-28{\sim}300ppm/^{\circ}C$ in the temperature range of $-55{\sim}125^{\circ}C$. We think that this composites can be used high-Q substrate material like LTCC and embedded temperature compensation capacitor in printed circuit boards.

  • PDF

A Study on the Electrical Strength of Insulating Materials for High-Tc Superconducting Devices

  • Bae, Duck Kweon;Kim, Chung-Hyeok;Pak, Min-Sun;Oh, Yong-Cheul;Kim, Jin-Sa;Shin, Cheol-Gee;Lee, Joon-Ung;Song, Min-Jong;Choi, Woon-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권6호
    • /
    • pp.294-300
    • /
    • 2005
  • According to the trend for electric power equipment of high capacity and reduction of its size, the needs for the new high performance electric equipments become more and more important. On of the possible solution is high temperature superconducting (HTS) power application. Following the successful development of practical HTS wires, there have been renewed activities in developing superconducting power equipment. HTS equipments have to be operated in a coolant such as liquid nitrogen ($LN_2$) or cooled by conduction-cooling method such as using Gifford-McMahon (G-M) cryocooler to maintain the temperature below critical level. In this paper, the dielectric strength of some insulating materials, such as unfilled epoxy, filled epoxy, and polyimide in $LN_2$ was analyzed. Epoxy is a good insulating material but fragile at cryogenic temperature. The filled epoxy composite not only compensates for this fragile property but enhances its dielectric strength.

Detecting and predicting the crude oil type inside composite pipes using ECS and ANN

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.377-393
    • /
    • 2016
  • The present work develops an expert system for detecting and predicting the crude oil types and properties at normal temperature ${\theta}=25^{\circ}C$, by evaluating the dielectric properties of the fluid transfused inside glass fiber reinforced epoxy (GFRE) composite pipelines, by using electrical capacitance sensor (ECS) technique, then used the data measurements from ECS to predict the types of the other crude oil transfused inside the pipeline, by designing an efficient artificial neural network (ANN) architecture. The variation in the dielectric signatures are employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such problem. ECS consists of 12 electrodes mounted on the outer surface of the pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Radial Basis neural network (RBNN), structure is applied, trained and tested to predict the finite element (FE) results of crude oil types transfused inside (GFRE) pipe under room temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an RBNN results, thus validating the accuracy and reliability of the proposed technique.

에폭시/나노층상복합재료의 유전분산과 완화 (dispersion and relaxation of Epoxy/Layered Nanocomposite)

  • 안준호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.87-87
    • /
    • 2010
  • Epoxy/mica has been used as the material of high-voltage rotator stator winding due to its high insulation performance, mechanical strength, and thermal stability. In recent years, however, it shows frequent changes in the load of generators and frequent automatic stops due to the significant increase in peak loads from the increase in the applied load of power facilities according to the introduction of advanced and high-technology equipments. Thus, it is necessary to develop new materials that highly develop the conventional insulation materials. Nanotechnology introduced in the present time has become an alternative plan that overcomes such technical limitations. In addition, the nano-scaled intercalation composite has been known as the material that represent excellent electrical, mechanical, and thermal characteristics compared to the conventional materials. This study investigated the dielectric dispersion and relaxation characteristics of the nanocomposite, which was fabricated by mixing epoxy matrix with nano-scaled intercalation mica and clay, according to changes in frequencies and temperatures.

  • PDF

A Composite of Metal and Polymer Films: Thin Nickel Film Coated on a Polypropylene Film after Atmospheric Plasma Induced Surface Modification

  • Song, Ho-Shik;Choi, Jin-Moon;Kim, Tae-Wan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권3호
    • /
    • pp.110-114
    • /
    • 2011
  • Polymeric films of high chemical stability and mechanical strength covered with a thin metallic film have been extensively used in various fields as electric and electronic materials. In this study, we have chosen polypropylene (PP) as the polymer due to its outstanding chemical resistance and good creep resistance. We coated thin nickel film on PP films by the electroless plating process. The surfaces of PP films were pre-treated and modified to increase the adhesion strength of metal layer on PP films, prior to the plating process, by an environment-friendly process with atmospheric plasma generated using dielectric barrier discharges in air. The surface morphologies of the PP films were observed before and after the surface modification process using a scanning electron microscope (SEM). The static contact angles were measured with deionized water droplets. The cross-sectional images of the PP films coated with thin metal film were taken with SEM to see the combined state between metallic and PP films. The adhesion strength of the metallic thin films on the PP films was confirmed by the thermal shock test and the cross-cutting and peel test. In conclusion, we made a composite material of metallic and polymeric films of high adhesion strength.

Methacrylate/Polyurethane이 함유된 Epoxy 복합재료의 직류 절연 파괴 특성에 관한 연구 (A Study on the DC Dielectric Breakdown Properties of Epoxy Composites Containing Methacrylate/Polyurethane)

  • 김명호;김경환;이덕진;가출현;신성궝;김재환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1357-1359
    • /
    • 1994
  • In this study, in order to improve the problem that dielectric breakdown strength decrease remarkably at high temperature, simultaneous interpenetrating polymer networks method was Introduced so that epoxy insulating material could have stable temperature characteristics and stable dielectric breakdown characteristics at whole temperature range. So network structure of epoxy/$SiO_2$ composite material was changed by adding MA and MA/PU into epoxy resin. DC voltage is applied into the specimen fabricated by this method, and then the result was compared and investigated.

  • PDF