• Title/Summary/Keyword: High density image resolution

Search Result 75, Processing Time 0.021 seconds

Generation of Simulated Geospatial Images from Global Elevation Model and SPOT Ortho-Image

  • Park, Wan Yong;Eo, Yang Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • With precise sensor position, attitude element, and imaging resolution, a simulated geospatial image can be generated. In this study, a satellite image is simulated using SPOT ortho-image and global elevation data, and the geometric similarity between original and simulated images is analyzed. Using a SPOT panchromatic image and high-density elevation data from a 1/5K digital topographic map data an ortho-image with 10-meter resolution was produced. The simulated image was then generated by exterior orientation parameters and global elevation data (SRTM1, GDEM2). Experimental results showed that (1) the agreement of the image simulation between pixel location from the SRTM1/GDEM2 and high-resolution elevation data is above 99% within one pixel; (2) SRTM1 is closer than GDEM2 to high-resolution elevation data; (3) the location of error occurrence is caused by the elevation difference of topographical objects between high-density elevation data generated from the Digital Terrain Model (DTM) and Digital Surface Model (DSM)-based global elevation data. Error occurrences were typically found at river boundaries, in urban areas, and in forests. In conclusion, this study showed that global elevation data are of practical use in generating simulated images with 10-meter resolution.

High Quality Ortho-image Production Using the High Resolution DMCII Aerial Image (고해상도 DMCII 항공영상을 이용한 고품질 정사영상 제작)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.11-21
    • /
    • 2015
  • An Ortho-image is the production of removed geometrical displacement, which is generated the aerial image distortion and the relief displacement, etc., using the DSM (Digital Surface Model). Accordingly, the resolution of raw image and the accuracy of DSM will has significant impacts on the ortho-image accuracy. Since the latest DMCII250 aerial camera delivers the high resolution images with five centimeters Ground Sampling Distance(GSD), it expects to generate the high density point clouds and the high quality ortho-images. Therefore, this research has planned for reviewing the potentiality and accuracy of high quality ortho-image production. Following to proceed the research, DSM has been produced through the high density point cloud extracted from DMCII250 aerial image to supply of high density DSM by creation of ortho-image. The research results has been identified that images with the DSM brought out higher degrees in positional accuracy and quality of ortho-image, compared with the ortho-image, produced from the existing digital terrain map or DSM data.

The Comparison of Visual Interpretation & Digital Classification of SPOT Satellite Image

  • Lee, Kyoo-Seock;Lee, In-Soo;Jeon, Seong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.433-438
    • /
    • 1999
  • The land use type of Korea is high-density. So, the image classification using coarse resolution satellite image may not provide land cover classification results as good as expected. The purpose of this paper is to compare the result of visual interpretation with that of digital image classification of 20 m resolution SPOT satellite image at Kwangju-eup, Kyunggi-do, Korea. Classes are forest, cultivated field, pasture, water and residential area, which are clearly discriminated in visual interpretation. Maximum likelihood classifier was used for digital image classification. Accuracy assessment was done by comparing each classification result with ground truth data obtained from field checking. The classification result from the visual interpretation presented an total accuracy 9.23 percent higher than that of the digital image classification. This proves the importance of visual interpretation for the area with high density land use like the study site in Korea.

  • PDF

SGM Performance Improvement of Stereo Satellite Image with Classified Image and Edge Image (분류영상과 에지영상을 이용한 입체 위성영상의 SGM 성능개선)

  • Lee, Hyoseong;Park, Byungwook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.655-661
    • /
    • 2020
  • SGM (Semi Global Matching) can be used to find all the conjugate points between stereo images. Therefore, it enables high-density DSM (Digital Surface Model) production from high-resolution satellite images. However, water, shadows, and occlusion areas cause mismatching of the surrounding points in this method. Particularly, in buildings with large-parallax and elongated-shapes such as a Korean style apartment, it is difficult to reconstruct the 3D building even if the SGM method is applied to a high-resolution 50cm satellite image. This study proposed and performed the SGM technique with a classified image and an edge image from the IKONOS-2 satellite stereo-image with a 1m resolution to produce DSM. It was compared with the DSMs from the general SGM and the high-density ABM (Area Based Matching) matching of ERDAS software. The results of the apartment DSM by the proposed method were the best in the test area. As a result, despite the image having a resolution of 1m, the outline of the building DSM could be expressed more clearly than the existing method.

Improved Super-Resolution Algorithm using MAP based on Bayesian Approach

  • Jang, Jae-Lyong;Cho, Hyo-Moon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.35-37
    • /
    • 2007
  • Super resolution using stochastic approach which based on the Bayesian approach is to easy modeling for a priori knowledge. Generally, the Bayesian estimation is used when the posterior probability density function of the original image can be established. In this paper, we introduced the improved MAP algorithm based on Bayesian which is stochastic approach in spatial domain. And we presented the observation model between the HR images and LR images applied with MAP reconstruction method which is one of the major in the SR grid construction. Its test results, which are operation speed, chip size and output high resolution image Quality. are significantly improved.

  • PDF

Electrical Impedance Tomography and Biomedical Applications

  • Woo, Eung-Je
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.1-6
    • /
    • 2007
  • Two impedance imaging systems of multi-frequency electrical impedance tomography (MFEIT) and magnetic resonance electrical impedance tomography (MREIT) are described. MFEIT utilizes boundary measurements of current-voltage data at multiple frequencies to reconstruct cross-sectional images of a complex conductivity distribution (${\sigma}+i{\omega}{\varepsilon}$) inside the human body. The inverse problem in MFEIT is ill-posed due to the nonlinearity and low sensitivity between the boundary measurement and the complex conductivity. In MFEIT, we therefore focus on time- and frequency-difference imaging with a low spatial resolution and high temporal resolution. Multi-frequency time- and frequency-difference images in the frequency range of 10 Hz to 500 kHz are presented. In MREIT, we use an MRI scanner to measure an internal distribution of induced magnetic flux density subject to an injection current. This internal information enables us to reconstruct cross-sectional images of an internal conductivity distribution with a high spatial resolution. Conductivity image of a postmortem canine brain is presented and it shows a clear contrast between gray and white matters. Clinical applications for imaging the brain, breast, thorax, abdomen, and others are briefly discussed.

  • PDF

470 x 235ppi poly-Si TFT LCD for High-Resolution 2D and 3D Autostereoscopic Display

  • Uehara, Shin-Ichi;Ikeda, Naoyasu;Takanashi, Nobuaki;Iriguchi, Masao;Sugimoto, Mitsuhiro;Matsuzaki, Tadahiro;Asada, Hideki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.783-786
    • /
    • 2004
  • We have developed a 470 x 235ppi poly-Si TFT LCD with a novel pixel arrangement, called HDDP (Horizontally Double-Density Pixels), for high-resolution 2D and 3D autostereoscopic display. 3D image quality is especially high in a lenticular-lens-equipped 3D mode because both horizontal resolution and vertical resolution are high, and because these resolutions are equal. 3D and 2D images can be displayed simultaneously in the same picture. In addition, 3D images can be displayed anywhere and 2D characters can be made to appear at different depths with perfect legibility. No switching of 2D/3D modes is necessary, and the design's thin and uncomplicated structure makes it especially suitable for mobile terminals.

  • PDF

Study on enhancing the ultrasonic image for bone densitometry (골밀도 측정을 위한 초음파 영상 개선에 관한 연구)

  • Shin, Jung-Sik;Ahn, Jung-Hwan;Kim, Hyung-Joon;Kim, Hwa-Young;Han, Seung-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.182-191
    • /
    • 2005
  • It is very important to obtain a high quality of bone image for an accurate ultrasonic measurement of bone mineral density. In this study, we suggested a technique to acquire an optimal image by adapting an acoustic lens and a properly selected ultrasonic probe. Also, we have applied an image processing algorithm with which automatically makes a decision of brightness and contrast of image by generating threshold level, a composition of ultrasonic data, an elimination of noise using modified median filter, and a real time interpolation. We could confirm much improved resolution of bone image with acoustic lens attached to the ultrasonic probe and with the image processing algorithm suggested in this study. Therefore, it became possible to precisely diagnose the osteoprosis using ultrasonic imaging technique.

DEVELOPING FOREST TYPE CLASSIFICATION METHODOLOGY USING KOMPSAT IMAGE BASED ON TASSELED CAP TRANSFORMATION

  • Kim, Sung-Jae;Jo, Yun-Won;Jo, Myung-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.358-360
    • /
    • 2008
  • Recently there are many pilot studies for advanced application of first Korea national high resolution satellite image, which is called as KOMPSAT-MSC (Korean Multi-purpose Satellite-Multi-Spectral Camera), in Korea. In this study the forest type classification methodology is developed and its distribution map was constructed by applying high resolution satellite image, KOMPSAT-MSC, based on Tasseled Cap Transformation, especially through comparing the result of detailed filed surveying such as forest type, tree species, tree diameter, tree age and tree crown density in pilot study area.

  • PDF

Super Resolution based on Reconstruction Algorithm Using Wavelet basis (웨이브렛 기저를 이용한 초해상도 기반 복원 알고리즘)

  • Baek, Young-Hyun;Byun, Oh-Sung;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.17-25
    • /
    • 2007
  • In most electronic imaging applications, image with high resolution(HR) are desired. HR means that pixel density within an image is high, and therefore HR image can offer more details that may be critical in various applications. Digital images that are captured by CCD and CMOS cameras usually have a very low resolution, which significantly limits the performance of image recognition systems. Image super-resolution techniques can be applied to overcome the limits of these imaging systems. Super-resolution techniques have been proposed to increase the resolution by combining information from multiple images. To techniques were consisted of the registration algorithm for estimation and shift, the nearest neighbor interpolation using weight of acquired frames and presented frames. In this paper, it is proposed the image interpolation techniques using the wavelet base function. This is applied to embody a correct edge image and natural image when expend part of the still image by applying the wavelet base function coefficient to the conventional Super-Resolution interpolation method. And the proposal algorithm in this paper is confirmed to improve the image applying the nearest neighbor interpolation algorithm, bilinear interpolation algorithm.,bicubic interpolation algorithm through the computer simulation.