• Title/Summary/Keyword: High coupling ratio

Search Result 184, Processing Time 0.032 seconds

The Piezoelectric Characteristics of PZ-PT-PMS Ceramics for Large Displacement Application (고진동레벨에서의 PZ-PT-PMS계 세라믹의 압전특성)

  • 이동준;권순석;신달우;정수현;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.250-253
    • /
    • 1997
  • Generally, Piezoelectric ceramics based lead-zirconate-titanate(PZT) system are well known to use in high power devices. In this pacer. Pb(Mn$\sub$1/3//Sb$\sub$2/3/)O$_3$(PMS) ceramics which have been shown to be adaptable for a high power usage is introduced. The stability of piezoelectric properties in PZ-PT-PMS solid solution system such as piezoelectric constants. electromechanical coupling coefficient and mechanical quality factor is discussed by the addition effect of CeO$_2$ as a additive. The CeO$_2$ ratio ranges from 0 to 2 wt%. The resonant and anti-resonant frequencies. mechanical quality factor, and force factor are also measured as a function of vibration velocity

  • PDF

A Study on Improved Isolation of Indoor Repeating Antenna using Metamaterial Absorber for WCDMA System

  • Kim, Hyoungjun;Moon, Yong;Seo, Chulhun
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.850-855
    • /
    • 2013
  • This paper proposes a novel design for a compact, high-isolation WCDMA indoor repeater antenna. The proposed antenna consists of a patch antenna and metamaterial absorber. The required WCDMA bandwidth is obtained by utilizing the coupling between the main and the parasitic patches. In addition, high isolation is achieved using the metamaterial absorber, which has an absorption of about 98% at 2.1 GHz. Overall, the proposed antenna has a gain of over 7 dBi, a Voltage Standing Wave Ratio (VSWR) of less than 2, more than 85 dB of isolation between the service and donor antennas over the WCDMA band and a total volume of the proposed antenna only $70mm{\times}70mm{\times}43.8mm$.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

A cavitation performance prediction method for pumps PART1-Proposal and feasibility

  • Yun, Long;Rongsheng, Zhu;Dezhong, Wang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2471-2478
    • /
    • 2020
  • Pumps are essential machinery in the various industries. With the development of high-speed and large-scale pumps, especially high energy density, high requirements have been imposed on the vibration and noise performance of pumps, and cavitation is an important source of vibration and noise excitation in pumps, so it is necessary to improve pumps cavitation performance. The modern pump optimization design method mainly adopts parameterization and artificial intelligence coupling optimization, which requires direct correlation between geometric parameters and pump performance. The existing cavitation performance calculation method is difficult to be integrated into multi-objective automatic coupling optimization. Therefore, a fast prediction method for pump cavitation performance is urgently needed. This paper proposes a novel cavitation prediction method based on impeller pressure isosurface at single-phase media. When the cavitation occurs, the area of pressure isosurface Siso increases linearly with the NPSHa decrease. This demonstrates that with the development of cavitation, the variation law of the head with the NPSHa and the variation law of the head with the area of pressure isosurface are consistent. Therefore, the area of pressure isosurface Siso can be used to predict cavitation performance. For a certain impeller blade, since the area ratio Rs is proportional to the area of pressure isosurface Siso, the cavitation performance can be predicted by the Rs. In this paper, a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments, which will greatly accelerate the pump hydraulic optimization design.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.

Study on Heterogeneous Structures and High-Frequency Magnetic Properties Amorphous CoZrNb Thin Films (비정질 CoZrNb 박막의 불균일 구조와 고주파 자기특성에 관한 연구)

  • 정인섭;허재헌
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.2
    • /
    • pp.31-36
    • /
    • 1991
  • Structural and compositional heterogeneities of sputter deposited, amorphous $Co_{87}Zr_{4}NB_{9}$ thin films were investigated using TEM and EDS with windowless detector. The films deposited with substrate bias and annealed in rotating magnetc field showed two amorphous phases of Co-rich region and (ZrNb)oxide-rich region, and revealed 'ultra-soft' magnetic properties. Revesible bias-responses and overdamped frequency responses, along with small Hc, Hk and Mr/Ms ratio, give the possibility of ultra-soft magnetic behavior fo CoZrNb thin films. We proposed the vortex type magnetization distribution in remanent state which was correlated with the thin film heterogeneity. Then, the ultra-soft characteristics of the compositionally heterogeneous films were explained by the spin vortices that minimized the total magnetostatic and exchange coupling energies.

  • PDF

The Operating Characteristics of DBR-LD with Wavegudies Coupling Structure (도파로 결합 구조에 따른 DBR-LD의 동작특성)

  • 오수환;박문호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.9
    • /
    • pp.666-672
    • /
    • 2003
  • In this paper, we described the fabrication and the performance of wavelength tunable distributed bragg reflector (DBR) laser diode (LD), having different waveguide coupling mechanisms; integrated-twin-guide (ITG) DBR-LD and butt coupled (BT) DBR-LD. This deviceis fabricated by metal organic vapor phase epitaxy (MOVPE) growth and planar buried heterostructure (PBH)-type transverse current confinement structure. The result of measurement, the optical performance of BT-DBR-LD is better over 2 times than that of ITG-DBR-LD at the variation of threshold current and output power, and slop efficiency due to the higher coupling efficiency of the butt coupled structure than the integrated twin guide structure. The maximum wavelength tuning range is about 7.2nm for ITG DBR-LD and 7.4nm for BT DBR-LD. Both types of lasers have a very high yield of single mode operation with a side-mode suppression ratio of more than 35dB.

Effects of Process Variables and MAPP Coupling Agent on Properties of Wood Fiber-Polypropylene Fiber Composite by Turbulent Air Mixing (공정변수(工程變數)와 MAPP 결합제(結合劑)가 난기류(亂氣流) 혼합방식(混合方式)에 의하여 제조(製造)된 목섬유(木纖維)-폴리프로필렌섬유(纖維) 복합재(複合材)의 성질(性質)에 미치는 영향(影響))

  • Yoon, Hyoung-Un;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.76-86
    • /
    • 1998
  • Effects of processing variables and MAPP (maleic anhydride polypropylene) coupling agent on the properties of composite were discussed for turbulent-air-mixed woodfiber-polypropylenefiber composites. In this research, density, composition ratio, and mat moisture content were established as processing variables, and emulsified MAPP prepared by direct pressure method was incorporated as the coupling agent. And the turbulent air mixer, which was improved in function through alteration of our previous fiber mixer, was used to mix wood fibers and polypropylene fibers. At the addition level of 1% MAPP, based on oven-dried wood fiber weight, woodfiber-polypropylenefiber composites generally showed enhanced the physical and mechanical properties. And composites with low to medium densities of 0.6 to 0.8g/$cm^3$ greatly increased in these property values than with high densities of 1.0g/$cm^3$ or more by adding 1 % MAPP. Thus, MAPP addition was thought to be an effective way of enhancing properties for nonwoven web composites. At the mat moisture contents of 5 to 20%, however, the physical and mechanical properties were not enhanced by adding 1% MAPP. In the composites containing 15% polypropylene fibers, the lowest thickness swelling and water absorption values were observed at the 1% MAPP level. The addition of more than 1% MAPP had the adverse effect on the physical and mechanical properties of composites.

  • PDF

Performance Analysis of the PCAE and PCAD in FO-CDMA Communication Network (FO-CDMA 통신망에서 PCAE와 PCAD 동작특성 분석)

  • Kang, Tae-Gu;Choi, Young-Wan
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.4
    • /
    • pp.5-16
    • /
    • 2003
  • We have analyzed the performance of optical matched filters in the fiber-optic code division multiple access (FO-CDMA) system based on optical parallel coupler access encoder (PCAE) and parallel coupler access decoder (PCAD) by experiment. In previous studies, the performance evaluation of the FO-CDMA system using SCAE and SCAD was not sufficiently accurate because they analyzed system performance only considering the first order signals. Since optical SCAE and SCAD intrinsically have high order signals of various patterns as the number of coupler increases, they change auto- and cross-correlation intensities. Thus, it is necessary to investigate properties of the PCAE and PCAD so that we may analyze the exact performance of system. In this paper, it is found that the peak to sidelobe ratio using the PCAE and PCAD increases as $\alpha$ (coupling coefficient) value increases. Also, we found that the proposed PCAE and PCAD are superior to SCAE and SCAD in performance improvement.

  • PDF