• 제목/요약/키워드: High coupling ratio

검색결과 184건 처리시간 0.029초

Stress and wear distribution characteristics of cutterhead for EPB shield tunneling in cobble-boulders

  • Zhiyong Yang;Xiaokang Shao;Hao Han;Yusheng Jiang;Jili Feng;Wei Wang;Zhengyang Sun
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.73-84
    • /
    • 2024
  • Owing to the high strength and abrasive characteristics of cobble-boulders, cutters are easily worn and damaged during shield tunneling, making construction inefficient. In the present work, the stress on the ripper and scraper on the cutterhead was analyzed by the PFC3D-FLAC3D coupling model of shield tunneling to get insight into the performance of the cutterhead for cutting underground cobble and boulders. The numerical calculation results revealed that the increase in trajectory radius leads to a rising stress on the cutters, and the stress on the front cutting surface is greater than that on the back of the cutters. Moreover, the correlation between cutter wear and stress is revealed based on field measurement data. The distribution of the cutter stress is consistent with the cutter wear and breakage characteristics in actual construction, in which more extensive cutter stress is exhibited, extreme cutter wear appears, and more cutter breakage occurs. Finally, the relationship between the cutterhead opening area's layout and cutter wear distribution was investigated, indicating that the cutter wear extent is the most severe in the region where the radial opening ratio dropped sharply.

터널링형 $E^2PROM$ 제작 및 그 특성에 관한 연구 (Study on the Fabrication of Tunnel Type $E^2PROM$ and Its Characteristics)

  • 김종대;김성일;김보우;이진효
    • 대한전자공학회논문지
    • /
    • 제23권1호
    • /
    • pp.65-73
    • /
    • 1986
  • Experiment have been conducted about thin oxide characteristics according to O2/N2 ratio needed for EEPROM cell fabrication. As a result, we think that there is no problem even if we grow oxide layer with large O2/N2 ratio and short exidation time and when the water is implated by As before oxidation, the oxide breakdown field is about IMV/cm lower than that is not implanted. Especially, the thin oxide characteristic seems to be affected largely by wafer cleaning and oxidation in air. On the basis of these, tunnel type EEPROM cell is fabricated by 3um CMOS process and its characteristic is studied. Tunnel oxide thickness(100\ulcorner is chosen to allow Fowler-Nordheim tunneling to charge the floating gate at the desired programming voltage and tunnel area(2x2um\ulcorneris chosen to increase capacitive coupling ratio. For program operation, high voltage (20-22V) is applied to the control gate, while both drain and source are gdrounded. The drain voltage for erase is 16V. It is shown that charge retention characteristics is not limited by leakage in the oxide and program/erase endurance is over 10E4 cycles of program erase operation.

  • PDF

PNN-PMN-PZT 단판형 압전변압기의 온도의존성 연구 (Study on thermal effect of PNN-PMN-PZT ceramics Piezoelectric transformer)

  • 주현규;김인성;정순종;김민수;송재성;이대수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.222-223
    • /
    • 2008
  • Recently, piezoelectric transformer is applied to wide fields. Multi layer piezoelectric transformer has the advantage of high step up ratio, high electromechanical coupling coefficient(Kp) and high mechanical quality factor(Qm), however it shows the peeling-phenomenon of electrode, and high price due to high sintering temperature. Therefore this study focus on the method for fabrication of high power rosen type piezoelectric transformers. The composition of $0.01Pb(Ni_{1/3}Nb_{2/3)O_3$ - 0.08Pb$(Mn_{1/3}Nb_{2/3})O_3$-0.91Pb$(Zr_{0.505}Ti_{0.495})O_3$(abbreviated as PNN-PMN-PZT) ceramics is employed for this study.

  • PDF

강섬유와 묶음철근 보강을 통한 고성능 연결보의 이력거동 평가 (Hysteretic Behavior Evaluation of a RC Coupling Beam using a Steel Fiber and Diagonal Reinforcement)

  • 오해철;이기학;한상환;신명수;조영욱
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.291-298
    • /
    • 2015
  • 본 논문은 시공성과 내진성능을 증대하기 위해 고성능 강섬유를 혼합한 묶음대각철근 연결보를 제시한다. 연결보의 실험은 4개의 실험체로 구성하고 고성능 강섬유를 혼합한 실험체에 반복하중을 가하여 이력거동을 비교 평가하였다. 실험의 주요 변수는 강섬유의 혼합에 따라 대각철근의 묶음 여부와 스터럽의 철근량이다. 기준이 되는 실험체는 묶음대각철근에 ACI318에서 요구하는 스터럽의 철근량을 100% 적용하였다. 이와 함께, 동일한 묶음대각철근을 적용한 상태에서 스터럽의 철근량을 75%와 50%로 조절하여 두 실험체를 추가적으로 만들고 일반대각철근을 고려, 총 4개의 실험체가 제작되었다. 이번 실험에서 연결보의 콘크리트 타설시 고성능 강섬유를 함유율 1%로 혼합하였다. 모든 실험체는 1/2스케일로 형상비 3.5(l/h=1050/300)으로 이루어졌다. 본 실험결과에서 강섬유를 1% 혼입한 고성능 시멘트를 적용한 연결보는 스터럽 철근양을 75%, 50% 줄인 것과 기준실험체로 적용된 스터럽 철근양 100%의 강도 및 강성, 에너지소산능력에서 큰 차이를 보이지 않았다.

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

고출력 압전 디바이스 응용을 위한 PZ-PT-PMN계 압전 세라믹의 특성 (The Characteristics of PZ-PT PMN Piezoelectric Ceramics for Application to High Power Device)

  • 홍종국;;이종섭;채홍인;윤만순;임기조;정수현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제49권3호
    • /
    • pp.156-156
    • /
    • 2000
  • The piezoelectric properties and the doping effect for $0.95Pb(Zr_xTi_{l-x})O_3+0.O5Pb(Mn_{1/3}Nb_{2/3})O_3$compositions were studied. Also, the heat generation and the change of electromechanical characteristics, the important problem in practical usage, were investigated under high electric field driving. As a experiment results under low electric field, the value of $k_p$ and ${\varepsilon}_{33}^T$ were maximized, but $Q_m$ was minimized $(k_p=0.57, Q_m=1550)$ in the composition of x=0.51. In order to increase the values of $Q_m$, $Nb_2O_5$ was used as a dopant. As the result of that, the grain size was suppressed and the uniformity of grain was improved. Also, the values of $k_p$ decreased, and the values of $Q_m$ increased with doping concentration of $Nb_2O_5$ . As a experiment results under high electric field driving, when vibration velocity was ower than 0.6[m/s], the temperature increase was 20[℃], and the change ratio of mechanical quality factor was less than 10[%]. So, its electromechanical characteristics was very stable. Conclusively, piezoelectric ceramic composition investigated at this paper is suitable for application to high power piezoelectric devices.

Evaluation of the 256ch Flat Panel PS-PMT on Positioning Image Histogram for PET

  • Orita, Narimichi;Murayama, Hideo;Kawai, Hideyuki;Inadama, Naoko;Umehara, Takaya;Kasahara, Takehiro;Tsuda, Tomoaki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.324-327
    • /
    • 2002
  • For a next generation PET that realizes high sensitivity and high resolution, we proposed a design of a depth of interaction detector. A unit of the detector is constructed of four stages rectangular blocks of 2 by 2 Gd$_2$SiO$\sub$5/: Ce (GSO) crystal array optically coupled to position sensitive photomultiplier tube (PS-PMT). The 256ch flat panel PS-PMT is under development by Hamamatsu Photonics K.K., JAPAN. It has large cathode area, 51.7 by 51.7 mm$^2$, and the ratio of the effective area to external size is about 90%. The feature will contribute high packing fraction, accordingly high sensitivity. The 256 anodes are arranged in 16 by 16 at intervals of 3.0 mm. So as to evaluate the detector capability for identifying crystal of interaction, we got positioning image histograms with coupling a 16 by 5 array of GSO crystals, 2.9 by 2.9 by 7.5 mm$^3$, to the PS-PMT by irradiating a gamma ray uniformly from a point source. Flat panel PS-PMT is a new promising device for PET. We need to evaluate it if its performance is sufficiency. The performance was compared to the one with a 16ch PS-PMT.

  • PDF

Forward형 고압펄스 전원장치를 적용한 오존발생 시스템 의 개발 (Development of Ozone Generating System Applying Forward Type High Voltage Pulse Power Supply)

  • 김동희;원재선;김경식;이광식;정도영;오승훈
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권7호
    • /
    • pp.335-342
    • /
    • 2003
  • This paper presents a forward type high voltage pulse power supply for high voltage small current, which can be designed as a simple circuit configuration and managed easily using Power-MOSFET in the view of commercialization. According to the switching frequency, coupling factor(k) and duty ratio(D), the Principle of basic operation and the characteristics of the proposed pulse power supply are estimated. Simulation results have demonstrated the feasibility of the proposed pulse power supply. Also experimental results are presented to verify theoretical discussion with a lamp type ozonizer as a load. For studying the application at the part of environment of water, When ozonizer gas reacts with a colon bacillus, the sterilization characteristics of a colon bacillus according to the ozone concentration and response time have been investigated. This proposed pulse power supply will be able to be practically used as a pulse power supply in various environment improvement facilities like sterilization of colon bacillus, deodorization, and Nox gas elimination.

유도가열시스템의 구성부품에 대한 강건설계 (Robust Design for Parts of Induction Bolt Heating System)

  • 김두현;김성철;이종호;강문수;정천기
    • 한국안전학회지
    • /
    • 제36권2호
    • /
    • pp.10-17
    • /
    • 2021
  • This paper presents the robust design of each component used in the development of an induction bolt heating system for dismantling the high-temperature high-pressure casing heating bolts of turbines in power plants. The induction bolt heating system comprises seven assemblies, namely AC breaker, AC filter, inverter, transformer, work coil, cable, and CT/PT. For each of these assemblies, the various failure modes are identified by the failure mode and effects analysis (FMEA) method, and the causes and effects of these failure modes are presented. In addition, the risk priority numbers are deduced for the individual parts. To ensure robust design, the insulated-gate bipolar transistor (IGBT), switched-mode power supply (SMPS), C/T (adjusting current), capacitor, and coupling are selected. The IGBT is changed to a field-effect transistor (FET) to enhance the voltage applied to the induction heating system, and a dual-safety device is added to the SMPS. For C/T (adjusting current), the turns ratio is adjusted to ensure an appropriate amount of induced current. The capacitor is replaced by a product with heat resistance and durability; further, coupling with a water-resistant structure is improved such that the connecting parts are not easily destroyed. The ground connection is chosen for management priority.

곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究) (Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer)

  • 금동혁;이용국;이규승;한종호
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF