• Title/Summary/Keyword: High accurate scheme

Search Result 246, Processing Time 0.022 seconds

A Random Forest Model Based Pollution Severity Classification Scheme of High Voltage Transmission Line Insulators

  • Kannan, K.;Shivakumar, R.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.951-960
    • /
    • 2016
  • Tower insulators in electric power transmission network play a crucial role in preserving the reliability of the system. Electrical utilities frequently face the problem of flashover of insulators due to pollution deposition on their surface. Several research works based on leakage current (LC) measurement has been already carried out in developing diagnostic techniques for these insulators. Since the LC signal is highly intermittent in nature, estimation of pollution severity based on LC signal measurement over a short period of time will not produce accurate results. Reports on the measurement and analysis of LC signals over a long period of time is scanty. This paper attempts to use Random Forest (RF) classifier, which produces accurate results on large data bases, to analyze the pollution severity of high voltage tower insulators. Leakage current characteristics over a long period of time were measured in the laboratory on porcelain insulator. Pollution experiments were conducted at 11 kV AC voltage. Time domain analysis and wavelet transform technique were used to extract both basic features and histogram features of the LC signal. RF model was trained and tested with a variety of LC signals measured over a lengthy period of time and it is noticed that the proposed RF model based pollution severity classifier is efficient and will be helpful to electrical utilities for real time implementation.

Technique for Estimating the Number of Active Flows in High-Speed Networks

  • Yi, Sung-Won;Deng, Xidong;Kesidis, George;Das, Chita R.
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.194-204
    • /
    • 2008
  • The online collection of coarse-grained traffic information, such as the total number of flows, is gaining in importance due to a wide range of applications, such as congestion control and network security. In this paper, we focus on an active queue management scheme called SRED since it estimates the number of active flows and uses the quantity to indicate the level of congestion. However, SRED has several limitations, such as instability in estimating the number of active flows and underestimation of active flows in the presence of non-responsive traffic. We present a Markov model to examine the capability of SRED in estimating the number of flows. We show how the SRED cache hit rate can be used to quantify the number of active flows. We then propose a modified SRED scheme, called hash-based two-level caching (HaTCh), which uses hashing and a two-level caching mechanism to accurately estimate the number of active flows under various workloads. Simulation results indicate that the proposed scheme provides a more accurate estimation of the number of active flows than SRED, stabilizes the estimation with respect to workload fluctuations, and prevents performance degradation by efficiently isolating non-responsive flows.

  • PDF

A Practical Connection Admission Control Scheme in ATM Networks (ATM망에서 실용적 연결수락제어 기법)

  • Kang, Koo-Hong;Park, Sang-Jo
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.2
    • /
    • pp.181-187
    • /
    • 2002
  • Connection admission control(CAC), which decides whether or not to accept a new call request, is one of the most Important preventive congestion control techniques in asynchronous transfer mode(ATM) networks. To develop a practical CAC scheme, first we propose a "Modified Cell Loss Probability MP${\nu}"$, which is based on "Virtual Cell Loss Probability P${\nu}"$, taking into account mean burst duration of input traffic source and buffer size in ATM networks. MP${\nu}"$ computes more accurate cell loss probability than P${\nu}"$ without increasing computational complexity, since P${\nu}"$ is formulated simply form the maximum and the average cell rate of input traffic. P${\nu}"$ is overestimated as compared to the real cell loss probability when the mean burst duration is relatively small to the buffer capacity. Then, we Propose a CAC scheme, based on "Modified Virtual Bandwidth(MVB)" method, which may individualize the cell loss probabilities in heterogeneous traffic environments. For the proposed approach, we define the interference intensity to identify interferences between heterogeneous traffic sources and use it as well as MP${\nu}"$ to compute MVB. Our approach is well suitable for ATM networks since it provides high bandwidth utilization and guarantees simple and real time CAC computation for heterogeneous traffic environments.heterogeneous traffic environments.

Assessment of Tip Shape Effect on Rotor Aerodynamic Performance in Hover

  • Hwang, Je Young;Kwon, Oh Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.295-310
    • /
    • 2015
  • In the present study, an unstructured mixed mesh flow solver was used to conduct a numerical prediction of the aerodynamic performance of the S-76 rotor in hover. For the present mixed mesh methodology, the near-body flow domain was modeled by using body-fitted prismatic/tetrahedral cells while Cartesian mesh cells were filled in the off-body region. A high-order accurate weighted essentially non-oscillatory (WENO) scheme was employed to better resolve the flow characteristics in the off-body flow region. An overset mesh technique was adopted to transfer the flow variables between the two different mesh regions, and computations were carried out for three different blade configurations including swept-taper, rectangular, and swept-taper-anhedral tip shapes. The results of the simulation were compared against experimental data, and the computations were also made to investigate the effect of the blade tip Mach number. The detailed flow characteristics were also examined, including the tip-vortex trajectory, vortex core size, and first-passing tip vortex position that depended on the tip shape.

Development of High-Precision Hybrid Geoid Model in Korea (한국의 고정밀 합성지오이드 모델 개발)

  • Lee, Dong-Ha;Yun, Hong-Sik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.429-431
    • /
    • 2010
  • The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid which were presented the local vertical level. Therefore, it is necessary to find firstly the optimal scheme for improving the accuracy of gravimetric geoid in order to development the high-precision hybrid geoid model. Through finding the optimal scheme for determining the each part of gravimetric geoid, the most accurate gravimetric geoid model in Korea will be developed when the EIGEN-CG03C model to degree 360, 4-band spherical FFT and RTM reduction methods were used for determining the long, middle and short-frequency part of gravimetric geoid respectively. Finally, we developed the hybrid geoid model around Korea by correcting to gravimetric geoid with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. 503 GPS/Levelling data were used to model the correction term. The degree of LSC fitting to the final hybrid geoid model in Korea was evaluated as 0.001m ${\pm}0.054m$.

  • PDF

Effectual Method FOR 3D Rebuilding From Diverse Images

  • Leung, Carlos Wai Yin;Hons, B.E.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.145-150
    • /
    • 2008
  • This thesis explores the problem of reconstructing a three-dimensional(3D) scene given a set of images or image sequences of the scene. It describes efficient methods for the 3D reconstruction of static and dynamic scenes from stereo images, stereo image sequences, and images captured from multiple viewpoints. Novel methods for image-based and volumetric modelling approaches to 3D reconstruction are presented, with an emphasis on the development of efficient algorithm which produce high quality and accurate reconstructions. For image-based 3D reconstruction a novel energy minimisation scheme, Iterated Dynamic Programming, is presented for the efficient computation of strong local minima of discontinuity preserving energyy functions. Coupled with a novel morphological decomposition method and subregioning schemes for the efficient computation of a narrowband matching cost volume. the minimisation framework is applied to solve problems in stereo matching, stereo-temporal reconstruction, motion estimation, 2D image registration and 3D image registration. This thesis establishes Iterated Dynamic Programming as an efficient and effective energy minimisation scheme suitable for computer vision problems which involve finding correspondences across images. For 3D reconstruction from multiple view images with arbitrary camera placement, a novel volumetric modelling technique, Embedded Voxel Colouring, is presented that efficiently embeds all reconstructions of a 3D scene into a single output in a single scan of the volumetric space under exact visibility. An adaptive thresholding framework is also introduced for the computation of the optimal set of thresholds to obtain high quality 3D reconstructions. This thesis establishes the Embedded Voxel Colouring framework as a fast, efficient and effective method for 3D reconstruction from multiple view images.

  • PDF

An Unbiased Signal-to-Interference Ratio Estimator for the High Speed Downlink Packet Access System

  • Won, Seok-Ho;Kim, Whan-Woo;Ahn, Jae-Min;Lyu, Deuk-Su
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.418-421
    • /
    • 2003
  • We propose an unbiased signal-to-interference ratio (SIR) estimator for the high speed downlink packet access (HSDPA) system. The proposed SIR estimator solves the problem of underestimation present in conventional SIR estimators and is suitable for channel quality measurement in the adaptive modulation and coding scheme of HSDPA, which requires accurate SIR estimation for optimum adaptive modulation and coding selection. Our analysis and simulation results demonstrate the improved estimation performance of the proposed SIR estimator.

  • PDF

THE STUDY OF AERO-ACOUSTICS CHARACTERISTICS BY THE BOUNDARY CONDITIONS OF HIGH ORDER SCHEME (고해상도 수치기법의 경계조건에 따른 공력음향 특성에 관한 연구)

  • Lee, S.S.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.3
    • /
    • pp.25-32
    • /
    • 2009
  • The present paper focuses on the analysis of aero-acoustics characteristic by appling different four boundary conditions. The high-order and high-resolution numerical schemes are used for discrete accurate computation of compressible flow. The four boundary conditions include extrapolation, characteristic boundary condition, zonal characteristic boundary condition. These boundary conditions are applied to the computation of two dimensional circular cylinder flows with Mach number of 0.3 and Reynolds number of 400. The computation results are validated against measurement data and other computation results for the Strouhal frequency of vortex shedding, the mean drag coefficient and root-mean-square lift for the unsteady periodic flow regime. The characteristics of secondary frequency is predicted by three kinds of boundary conditions.

Accuracy Assessment of Planetary Boundary Layer Height for the WRF Model Using Temporal High Resolution Radio-sonde Observations (시간 고해상도 라디오존데 관측 자료를 이용한 WRF 모델 행성경계층고도 정확도 평가)

  • Kang, Misun;Lim, Yun-Kyu;Cho, Changbum;Kim, Kyu Rang;Park, Jun Sang;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.673-686
    • /
    • 2016
  • Understanding limitation of simulation for Planetary Boundary Layer (PBL) height in mesoscale meteorological model is important for accurate meteorological variable and diffusion of air pollution. This study examined the accuracy for simulated PBL heights using two different PBL schemes (MYJ, YSU) in Weather Research and Forecasting (WRF) model during the radiosonde observation period. The simulated PBL height were verified using atmospheric sounding data obtained from radiosonde observations that were conducted during 5 months from August to December 2014 over the Gumi weir in Nakdong river. Four Dimensional Data Assimilation (FDDA) using radiosonde observation data were conducted to reduce error of PBL height in WRF model. The assessment result of PBL height showed that RMSE with YSU scheme were lower than that with MYJ scheme in the day and night time, respectively. Especially, the WRF model with YSU scheme produced lower PBL height than with the MYJ scheme during night time. The YSU scheme showed lower RMSE than the MYJ scheme on sunny, cloudy and rainy day, too. The experiment result of FDDA showed that PBL height error were reduced by FDDA and PBL height at the nudging coefficient of $3.0{\times}10^{-1}$ (YSU_FDDA_2) were similar to observation compared to the nudging coefficient of $3.0{\times}10^{-4}$ (YSU_FDDA_1).

Adaptive OFDM with Channel Predictor in Broadband Wireless Mobile Communications (광대역 무선 이동 통신에서 채널 예측기를 갖는 적응 OFDM)

  • 황태진;황호선;백흥기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.370-377
    • /
    • 2004
  • In this paper, we present an adaptive modulation technique for orthogonal frequency division multiplexing (OFDM) for broadband wireless communications. Also, using improved channel prediction, we enhance the performance of adaptive OFDM in high mobility environments. Adaptive modulation technique has been shown to achieve reliable high-rate data transmission over frequency-selective fading channel when OFDM is employed. This scheme requires the accurate channel information between two stations for a better performance. In an outdoor high mobility environment, most of adaptive OFDM systems have to be given the channel information transmitted from the receiver. Even if it is possible, there is some delay. Moreover, the channel impulse response between two stations is very rapidly varied. If the channel information is obsolete at the time of transmission, then poor system performance will result. In order to solve this problem, we propose adaptive OFDM with improved channel predictor. The proposed bit allocation algorithm has a lower complexity and the proposed scheme mitigates the effect of channel delay. Robust approach is less sensitive to outdated channel information. Performance results show that the proposed scheme can achieve considerable performance enhancement.