• Title/Summary/Keyword: High Volume Fly Ash

Search Result 126, Processing Time 0.022 seconds

Effect of Waste Cooking Oil on Durability of High Volume Mineral Admixture Concrete (폐유지류가 혼화재 다량 치환 콘크리트의 내구성에 미치는 영향)

  • Han, Min-Cheol;Woo, Dae-Hoon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.173-180
    • /
    • 2013
  • This paper is to investigate an effect of waste cooking oil(WCO) on the engineering properties and durability of high volume admixture concrete. Fly ash with 30% and blast furnace slag with 60% were incorporated in OPC to fabricate high volume admixture concrete with 0.5 of W/B. Emulsified refining cooking oil(ERCO) was made by mixing WCO and emulsifying agent to improve fluidity. ERCO was replaced by cement from 0.25 to 1.0%. As results, the increase of ERCO resulted in decrease of slump and air contents. For compressive strength, the use of ERCO led to decrease the compressive strength at 28 days, while it had similar strength or much higher strength than plain concrete at 180 days. Resistance to carbonation and chloride penetration was improved with the increase of ERCO contents due to decreased pore distribution by saponification between ERCO and concrete, while freeze-thaw resistance was degraded due to air loss.

A Study on the Performance Improvement and Long-Term Strength Properties of Eco-cement Concrete (에코시멘트 콘크리트의 장기강도 특성 및 성능 향상 방안에 관한 연구)

  • Park, Kwang-Min;Lee, Gun-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.817-826
    • /
    • 2011
  • Concrete using eco-cement has a problem with long-term strength development. However, currently, a long-term strength development mechanism is not confirmed, resulting in a lack of application of eco-cement in construction fields. In this study, the curing humidity influence on development in long-term strength of concrete using eco-cement and the relationship between strength and pore structure were examined. The results showed that wet cured eco-cement with a high water/cement ratio showed serious long-term strength reduction due to non-reduction of pore volume (pore size over 10 nm) in mortar caste with eco-cement. Also, the study results on improvement of long-term strength of eco-cement by partial replacement with ordinary portland cement and finely-ground fly ash showed that both of these alternatives improved long-term strength of concrete caste with eco-cement due to gradual refinement of their micro-structure.

Effective Use of Micro Fines (미분의 효과적인 이용에 관한 연구)

  • 백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.73-78
    • /
    • 2001
  • Portland cement concrete is made with coarse aggregate, fine aggregate, portland cement, water and, in some cases, selected chemical admixtures such as air-entraining agents, water reducer, superplasticizer, and so on, and mineral admixtures such as fly ash, silica fume, slags, etc. Typically, in the concrete, the coarse aggregate and fine aggregate will occupy approximately 80 percent of the total volume of the final mix. Therefore, the coarse and fine aggregates affect to the properties of the portland cement concrete. As the natural sands are drained, it is necessary and economical to utilize crushed sands(manufactured fine aggregate). It is reported that crushed sands differ from natural sands in gradation, particle shape and texture, and the micro fines in the crushed sands affect to the quality of the portland cement concrete. Therefore, the purpose of this paper is to investigate the characteristics of fresh and hardened concrete with high content of micro fines. This study provides firm data for the use of crushed sands with higher micro fines.

  • PDF

Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete

  • Rashad, Alaa M.;Seleem, Hosam El-Din H.;Shaheen, Amr F.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.69-81
    • /
    • 2014
  • In this study, portland cement (PC) has been partially replaced with a Class F fly ash (FA) at level of 70 % to produce high-volume FA (HVFA) concrete (F70). F70 was modified by replacing FA at levels of 10 and 20 % with silica fume (SF) and ground granulated blast-furnace slag (GGBS) and their equally combinations. All HVFA concrete types were compared to PC concrete. After curing for 7, 28, 90 and 180 days the specimens were tested in compression and abrasion. The various decomposition phases formed were identified using X-ray diffraction. The morphology of the formed hydrates was studied using scanning electron microscopy. The results indicated higher abrasion resistance of HVFA concrete blended with either SF or equally combinations of SF and GGBS, whilst lower abrasion resistance was noted in HVFA blended with GGBS.

A Study on the Influence of Kinds of Mineral Admixture on the Properties of Early-Strength Development of Mortar (모르타르의 조기강도 발현 특성에 미치는 혼화재 종류의 영향에 관한 연구)

  • Kim, Sung-Su;Choi, Se-Jin;Jeong, Yong;Lee, Seong-Yeun;Kim, Dong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.889-892
    • /
    • 2006
  • In this study, we compared and analysed the early strength properties of mortar according to the kinds and replacement ratio of mineral admixture to select the kinds and replacement ratio of mineral admixture of high early strength concrete. For this purpose, mortar mixtures according to the kinds(FA, MK, ZR, BFS, DM) and replacement ratio(0, 2, 4% by volume of sand) of mineral admixture were selected. From our test data, early-age compressive strength decreased in accordance with the increase of replacement ratio of fly-ash(FA) & blast furnace slag powder(BSF) and, in case of addintion admixture, early-age compressive strength of with containing ZR & BFS appeared higher compared with containing other mineral admixture.

  • PDF

The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature (3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성)

  • Janchivdorj, Khulgadai;So, Hyoung-Seok;Yi, Je-Bang;So, Seung-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

Experimental study on rheology, strength and durability properties of high strength self-compacting concrete

  • Bauchkar, Sunil D.;Chore, H.S.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.183-196
    • /
    • 2018
  • The rheological behaviour of high strength self compacting concrete (HS-SCC) studied through an experimental investigation is presented in this paper. The effect of variation in supplementary cementitious materials (SCM) $vis-{\grave{a}}-vis$ four different types of processed crushed sand as fine aggregates is studied. Apart from the ordinary Portland cement (OPC), the SCMs such as fly ash (FA), ground granulated blast furnace slag (GGBS) ultrafine slag (UFS) and micro-silica (MS) are used in different percentages keeping the mix -paste volume and flow of concrete, constant. The combinations of rheology, strength and durability are equally important for selection of mixes in respect of high-rise building constructions. These combinations are referred to as the rheo-strength and rheo-durability which is scientifically linked to performance based rating. The findings show that the fineness of the sands and types of SCM affects the rheo-strength and rheo-durability performance of HS-SCC. The high amount of fines often seen in fine aggregates contributes to the higher yield stress. Further, the mixes with processed sand is found to offer better rheology as compared to that of mixes made using unwashed crushed sand, washed plaster sand, washed fine natural sand. The micro silica and ultra-fine slag conjunction with washed crushed sand can be a good solution for high rise construction in terms of rheo-strength and rheo-durability performance.

Triaxial shear behavior of calcium sulfoaluminate (CSA)-treated sand under high confining pressures

  • James Innocent Ocheme;Sakiru Olarewaju Olagunju;Ruslan Khamitov;Alfrendo Satyanaga;Jong Kim;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.41-51
    • /
    • 2023
  • Cementitious materials such as Ordinary Portland Cement (OPC), fly ash, lime, and bitumen have been employed for soil improvement over the years. However, due to the environmental concerns associated with the use of OPC, substituting OPC with calcium sulfoaluminate (CSA) cement offers good potential for ground improvement because it is more eco-friendly. Although earlier research has investigated the stabilizing effects of CSA cement-treated sand, no attempt has been made to examine soil behavior under high confining pressure. As a result, this study aimed to investigate the shear strength and mechanical behavior of CSA cement-treated sand using a consolidated drained (CD) triaxial test with high confining pressure. The microstructure of the examined sand samples was investigated using scanning electron microscopy. This study used sand with CSA cement contents of 3%, 5%, and 7% and confining pressures of 0.5, 1.0, and 1.5 MPa. It revealed that the confining pressures and CSA cement content significantly affected the stress-strain and volumetric change behavior of CSA cement-treated sand at high confining pressures.

Mix Design and Characteristics of Compressive Strengths for Foam Concrete Associated with the Application of Bottom Ash (Bottom Ash를 사용한 기포콘크리트의 배합 설계 및 압축강도 특성)

  • Kim, Sang-Chel;Ahn, Sang-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.283-290
    • /
    • 2009
  • Differently from fly ash, the bottom ash produced from thermoelectric power plant has been treated as an industrial waste matter, and almost reclaimed a tract from the sea. If this waste material is applicable to foam concrete as an aggregate owing to its light-weight, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and horizontal forces and deformations of retaining wall subject to soil pressure. This study has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was measured in terms of unit weight of concrete, air content, water-cement ratio and compressive strength. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationships between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a mix design proportion of foam concrete while bottom ash is used as an aggregate of the concrete.

A study on the Early-Strength Properties of Mortar according to the Kinds and Replacement Ratio of Mineral Admixture (혼화재 종류 및 치환율에 따른 모르터의 조기강도 특성에 관한 연구)

  • Choi, Se-Jin;Lee, Seong-Yeun;Kim, Sung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.2 s.24
    • /
    • pp.59-65
    • /
    • 2007
  • Recently, due to the increase of high-rise buildings construction, many researches for making harden of concrete earlier and remove of forms faster are being performed to reduce construction period. In this study, we compared and analysed the early strength properties of mortar according to the kinds and replacement ratio of mineral admixture to select the kinds and replacement ratio of mineral admixture of high early strength concrete. For this purpose, mortar mixtures according to the kinds(FA, MK, ZR, BFS, DM) and replacement ratio(0, 2, 4% by volume of sand) of mineral admixture were selected. From our test data, early-age compressive strength decreased in accordance with the increase of replacement ratio of fly-ash(FA) & blast furnace slag powder(BSF) and, in case of addition admixture, early-age compressive strength of with containing 4% appeared higher compared with containing 2%.