• 제목/요약/키워드: High Voltage DC Transmission

Search Result 95, Processing Time 0.043 seconds

Advanced Droop Control Scheme in Multi-terminal DC Transmission Systems

  • Che, Yanbo;Zhou, Jinhuan;Li, Wenxun;Zhu, Jiebei;Hong, Chao
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1060-1068
    • /
    • 2018
  • Droop control schemes have been widely employed in the control strategies for Multi-Terminal Direct Current (MTDC) system for its high reliability. Under the conventional DC voltage-active power droop control, the droop slope applies a proportional relationship between DC voltage error and active power error for power sharing. Due to the existence of DC network impedance and renewable resource fluctuation, there is inevitably a DC voltage deviation from the droop characteristic, which in turn results in inaccurate control of converter's power. To tackle this issue, a piecewise droop control with DC voltage dead band or active power dead band is implemented into controller design. Besides, an advanced droop control scheme with versatile function is proposed, which enables the converter to regulate DC voltage and AC voltage, control active and reactive power, get participated into frequency control, and feed passive network. The effectiveness of the proposed control method has been verified by simulation results.

Investigation of a Hybrid HVDC System with DC Fault Ride-Through and Commutation Failure Mitigation Capability

  • Guo, Chunyi;Zhao, Chengyong;Peng, Maolan;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1367-1379
    • /
    • 2015
  • A hybrid HVDC system that is composed of line commutated converter (LCC) at the rectifier side and voltage source converter (VSC) in series with LCC at the inverter side is studied in this paper. The start-up strategy, DC fault ride-through capability, and fault recovery strategy for the hybrid HVDC system are proposed. The steady state and dynamic performances under start-up, AC fault, and DC fault scenarios are analyzed based on a bipolar hybrid HVDC system. Furthermore, the immunity of the LCC inverter in hybrid HVDC to commutation failure is investigated. The simulation results in PSCAD/EMTDC show that the hybrid HVDC system exhibits favorable steady state and dynamic performances, in particular, low susceptibility to commutation failure, excellent DC fault ride-through, and fast fault recovery capability. Results also indicate that the hybrid HVDC system can be a good alternative for large-capacity power transmission over a long distance byoverhead line.

Improvement measures for power quality of DC distribution (직류배전의 전력품질 향상 대책)

  • Han, Seok-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.536-537
    • /
    • 2010
  • If DC voltage adjustment can be controlled very easily, it is much more effective rather than AC in transmission efficiency. The main reason why DC is more effective than AC, DC has the same role as the 70[%] of AC whenever the same power send. In addition, AC streams the surface of electrical wire, but DC streams overall of electrical wire. Digital load, which is operated by DC, has increased in modern times. The step of convert of AC-DC has to be reduced. When we turn the dispersed AC-DC converters into the concentrated AC-DC converter, it can improve the effective of the whole system. Further more, if digital society develops more than now and the time of electric vehicle comes, the need of DC will increase much more than these days. This paper suggests that DC output of distributed power source and high efficient 3 phase PWM converter can control the adjustment of output voltage, harmonic restraint, power factor improvement and dump power.

  • PDF

Analysis of Internal Energy Pulsation in MMC System According to Offset Voltage Injection with PWM Methods (PWM 방식을 이용한 옵셋 전압 주입에 따른 MMC 시스템 내부 에너지 맥동 분석)

  • Kim, Jae-Myeong;Jung, Jae-Jung
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1140-1149
    • /
    • 2019
  • In general, there are various pulse width modulation(PWM) methods simply using the offset voltage injection in voltage source converter(VSC). In accordance with the AC side voltage synthesis method with the offset voltage, DC side voltage utilization factor in VSC is changed. Also, this can apply equally to the MMC system. In other words, if the DC side capacity of the high voltage DC(HVDC) transmission system is determined, the maximum reactive power which can be supplied to the AC side can be changed according to the applied output voltage synthesis method with the offset voltage. In this paper, the leg energy pulsation in MMC system according to the AC side output voltage synthesis method with offset voltage which several representative PWM are applied to are mathematically analyzed and compared with each other. Finally, the above results are verified by simulation emulating the 400MVA full-scale MMC system to determine the consistency of the mathematical analysis.

Modification of DC Flashover Voltage at High Altitude on the Basis of Molecular Gas Dynamics

  • Liu, Dong-Ming;Guo, Fu-Sheng;Sima, Wen-Xia
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.625-633
    • /
    • 2015
  • The effect of altitude on thermal conduction, surface temperature, and thermal radiation of partial arc was investigated on the basis of molecular gas dynamics to facilitate a deep understanding of the pollution surface discharge mechanism. The DC flashover model was consequently modified at high altitude. The validity of the modified DC flashover model proposed in this paper was proven through a comparison with the results of high-altitude simulation experiments and earlier models. Moreover, the modified model was found to be better than the earlier modified models in terms of forecasting the flashover voltage. Findings indicated that both the thermal conduction coefficient and the surface thermodynamics temperature of partial arc had a linear decrease tendency with the altitude increasing from 0 m to 3000 m, both of which dropped by approximately 30% and 3.6%, respectively. Meanwhile, the heat conduction and the heat radiation of partial arc both had a similar linear decrease of approximately 15%. The maximum error of DC pollution flashover voltage between the calculation value according to the modified model and the experimental value was within 6.6%, and the pollution flashover voltage exhibited a parabola downtrend with increasing of pollution.

Study on the effect of DC voltage in oil-immersed transformer insulation system (DC 전압이 유입변압기 절연시스템에 미치는 영향에 관한 연구)

  • Jang, Hyo-Jae;Kim, Yong-Han;Seok, Bok-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1552-1553
    • /
    • 2011
  • The HVDC transformer which is one of the main equipments for HVDC(High Voltage Direct Current) electric power transmission systems is exposed to not only AC voltage but also the inflowing DC voltage which comes from the DC-AC converter systems. Therefore, the HVDC transformer insulation system is required to withstand the electric field stress under AC, DC and DC polarity reversal conditions. However the electric field distributions under those conditions are different because the AC electric field and DC electric field are governed by permittivity and conductivity, respectively. In this study, the changes of electric potential and electric field of conventional AC transformer insulation system under DC polarity reversal test condition were analyzed by FEM(Finite Element Method). The DC electric field stress was concentrated in the solid insulators while the AC electric field stress was concentrated in the mineral oil. In addition, the electric stress under that condition which is affected by the surface charge accumulation at the interfaces between insulators was evaluated. The stress in some parts could be higher than that of AC and DC condition, during polarity reversal test. The result of this study would be helpful for the HVDC transformer insulation system design.

  • PDF

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

A New Scheme for Nearest Level Control with Average Switching Frequency Reduction for Modular Multilevel Converters

  • Park, Yong-Hee;Kim, Do-Hyun;Kim, Jae-Hyuk;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.522-531
    • /
    • 2016
  • This paper proposes a new NLC (Nearest Level Control) scheme for MMCs (Modular Multilevel Converters), which offers voltage ripple reductions in the DC capacitor of the SM (Sub-Module), the output voltage harmonics, and the switching losses. The feasibility of the proposed NLC was verified through computer simulations. Based on these simulation results, a hardware prototype of a 10kVA, DC-1000V MMC was manufactured in the lab. Experiments were conducted to verify the feasibility of the proposed NLC in an actual hardware environment. The experimental results were consistent with the results obtained from the computer simulations.

Study on DC Swich Control in HVDC C&P System (HVDC C&P 시스템 내 DC Switch 제어에 관한 연구)

  • Son, Bong Kyun
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.133-134
    • /
    • 2013
  • 현재 LS산전과 한국전력공사의 공동 개발을 통하여 60MW급 ${\pm}80kV$ 전류형 HVDC(High Voltage Direct Current) Transmission System 내 알고리즘 국산화 개발을 진행하고 있다. 제어 알고리즘 여러 레벨(AC Yard Control, Master Control, Pole Control, Phase Control)에서 운전하기 전 여러 고려사항 중 DC Yard 내 DC Switch의 투입/개방의 조건이 있다. 본 논문에서는 이러한 DC Line에 DC Switch의 상태를 효율적으로 제어하는 방법에 대해 소개하고자 한다.

  • PDF

An Analysis of RF-DC Converter Circuits with GaN Schottky Barrier Diodes (GaN-SBD를 이용한 RF-DC 변환기 회로 분석)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.68-71
    • /
    • 2021
  • In this paper, GaN-SBD devices with excellent breakdown voltage and frequency characteristics for use in high-power microwave wireless power transmission has been modeled for PSpice circuit simulation. The RF-DC conversion circuits were simulated and compared with a commercial Si-SBD device. Although the modeled GaN-SBD devices had lower RF-DC conversion efficiency compared to Si-SBD at 2.4 and 5.8 GHz, it was confirmed through PSpice circuit simulations that they can be used sufficiently according to the required application circuit in a high power situation.