• Title/Summary/Keyword: High Viscosity Conductive Ink

Search Result 3, Processing Time 0.019 seconds

Implementation of High Performance Micro Electrode Pattern Using High Viscosity Conductive Ink Patterning Technique (고점도 전도성 잉크 패터닝 기술을 이용한 고성능 미세전극 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Dang, Hyun Woo;Yang, Young Jin;Choi, Kyung Hyun;Doh, Yang Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.83-90
    • /
    • 2014
  • EHD (electro-hydro-dynamics) patterning was performed under atmospheric pressure at room temperature in a single step. The drop diameter smaller than nozzle diameter and applied high viscosity conductive ink in EHD patterning method provide a clear advantage over the piezo and thermal inkjet printing techniques. The micro electrode pattern was printed by continuous EHD patterning method using 3-type control parameters (input voltage, patterning speed, nozzle pressure). High viscosity (1000cps) conductive ink with 75wt% of silver nanoparticles was used. EHD cone type nozzle having an internal diameter of $50{\mu}m$ was used for experimentation. EHD jetting mode by input voltage and applied 1st order linear regression in stable jet mode was analyzed. The stable jet was achieved at the amplitude of 1.4~1.8 kV. $10{\mu}m$ micro electrode pattern was created at optimized parameters (input voltage 1.6kV, patterning speed 25mm/sec and nozzle pressure -2.3kPa).

Implementation of Biosensor Pattern Using Micro Patterning Technique (미세전극 패터닝 기술을 이용한 바이오센서 패턴 구현)

  • Ko, Jeong Beom;Kim, Hyung Chan;Yang, Young Jin;Kim, Hyun Bum;Yang, Seong Wook;Oh, Seung Ho;Doh, Yang Hoi;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.122-128
    • /
    • 2016
  • The Biosensor biosensor pattern was developed by via an EHD (electro-hydro-dynamics (EHD) patterning process that was performed under atmospheric pressure at room temperature in a single step. The drop diameter was smaller than nozzle diameter and applied high viscosity conductive ink was applied in the EHD patterning method to provide a clear advantage over the piezo and thermal inkjet printing techniques. The Biosensor's biosensor's micro electrode pattern was printed by via a continuous EHD patterning method using 3three- type types of control parameters parameter (input voltage, patterning speed, nozzle pressure). High viscosity (1000 cps) conductive ink with 75 wt% of silver nanoparticles was used for experimentation. The incremental result of impedance of biosensor impedance was measured between the antibody ($10ug{\mu}g/ml$) to spore (0.1 ng/ml, 10 ng/ml, and $1ug{\mu}g./ml$) reaction at frequency 493 MHz frequency.

Effect of Properties of Conductive Ink on Printability of Electrode Patterning by Gravure Printing Method (그라비어 방식을 이용한 전극 인쇄 시 전도성 잉크의 물성이 인쇄성에 미치는 영향)

  • Nam, Ki Sang;Yoon, Seong Man;Lee, Seung-Hyun;Kim, Dong Soo;Kim, Chung Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.573-577
    • /
    • 2013
  • The one of the most important issue in roll-to-roll gravure printing is increase of ink transfer ratio or printability. As the result of high ink transfer ratio or printability, we can assess the quality of the printed patterns. The rheological properties are the important factors for the printability of electrodes patterning. In this study, the rheological properties of conductive ink are controlled by adding the solvent. The inks with different rheological properties are used for the patterning of the electrodes of $100{\mu}m$ by gravure printing equipment. The various printing speed, which also affect the rheological properties of conductive ink, is applied and the printed patterns are compared for their width and aspect ratio. Decreasing in the ink viscosity as well as increasing in the printing speed decreases the printability in gravure patterning, which shows that the rheological properties are important factors for the printability of gravure patterning.