• 제목/요약/키워드: High Velocity

검색결과 5,001건 처리시간 0.034초

관성용접(慣性熔接)된 이종재질(異種材質) IN713C-SAE8630의 용접성능(熔接性能)에 회전속도(回轉速度)가 미치는 영향(影響) (Effects of Rotational Velocity on Weld Character of Inertia-Welded IN713C-SAE8630)

  • 오세규
    • 대한조선학회지
    • /
    • 제9권2호
    • /
    • pp.43-48
    • /
    • 1972
  • Inertia friction welding, a relatively recent innovation in the art of joining materials, is a forge-welding process that releases kinetic energy stored in the flywheel as frictional heat when two parts are rubbed together under the right conditions. In a comparatively short time, the process has become a reliable method for joining ferrous, and dissimilar metals. The process is based on thrusting one part, attached to a flywheel and rotating at a relatively high speed, against a stationary part. The contacting surfaces, heated to plastic temperatures, are forged together to produce a reliable, high-strength weld. Welds are made with little or no workpiece preparation and without filler metal or fluxes. However, In order to obtain a good weld, the determination of the optimum weld parameters is an important problem. Especially, because the amount of the flywheel mass will be determined according to the initial rotating velocity values at the constant thrust load, the initial rotating velocity is an important factor to affect a weld character of the inertia-welded IN713C-SAE8630, which is used for the wheel-shafts of turbine rotors or turbochargers, exhausting valves, etc. In this paper, the effects of initial rotational velocity on a weld character of inertia-welded IN713C-SAE8630 was studied through considerations of weld parameters determination, micro-structural observations and tensile tests. The results are as the following: 1) As initial rotating velocity was reduced to 267 FPM, cracks and carbide stringers were completely eliminated in the micro-structure of welded zone. 2) As initial rotating velocity was reduced and flywheel mass was increased correspondingly, the maximum welding temperatures were decreased and the plastic working in the weld zone was increased. 3) As initial rotating velocity was progressively decreased and carbides were decreased, the tensile strengths were increased. 4) And also the fracture location moved out of the weld zone and the tensile tests produced, the failures only in the cast superalloy IN713C which do not extend into the weld area. 5) The proper initial rotating velocity could be determined as about 250 thru 350 FPM for the better weld character.

  • PDF

팬형분무의 주변조건에 따른 입자분포 변화 (The Droplet Size Distribution of Fan Spray at Different Surrounding Conditions)

  • 문석수;최재준;배충식
    • 대한기계학회논문집B
    • /
    • 제31권7호
    • /
    • pp.611-619
    • /
    • 2007
  • In this study, the droplet size distribution of a slit injector at different surrounding conditions, such as air flow and fuel temperature, were investigated. Phase Doppler anemometry (PDA) was utilized to investigate the initial droplet size distribution and the effect of fuel temperature and air flow on droplet size distribution. The entrained air motion was also evaluated by the temporal velocity profile of droplets. When the air flow velocity increased, the small droplets were more entrained to the upper and central parts of the spray and this tendency was confirmed by plotting the temporal velocity profile of droplets. This entrainment of small droplets at high airflow velocities caused relatively small mean droplet size at upper and central parts of the spray and the large mean droplet size at downstream and edge of the spray, compared to that of low airflow velocities. The total mean droplet size, obtained by averaging the size of all droplets measured at all test locations, decreased when the high airflow velocities were applied. The increased fuel temperature, with an airflow velocity of 10m/s, caused reduced droplet size at all test locations. However, the decreased value of mean droplet size at high fuel temperatures was relatively higher at upper parts of the spray, compared to downstream, as a result of enhanced entrainment of small droplets to upper parts of the spray.

정수처리 응집·한외여과 시스템의 연속운전을 통한 운전조건 결정 및 막오염 특성에 관한 연구 (Determination of operating factor and characteristics of membrane fouling on hybrid coagulation pretreatment-UF system in drinking water treatment)

  • 문성용;윤종섭;김승현
    • 상하수도학회지
    • /
    • 제22권2호
    • /
    • pp.267-274
    • /
    • 2008
  • This study is about efficiency of pretreatment process and operating factor to membrane process at continuous coagulation/ultrafiltration process in water treatment. The capacity of pilot plant was $0.06{\beta}(C)/d$. The raw water used was from Nakdong stream which was characteristized by high organic matter and high turbidity. The result of the test was that coagulation is good process as to high removal rate to organic matter and turbidity but It caused problem to membrane pore blocking. This paper is to determine the membrane fouling potential under different membrane flux, backwash pressure and linear velocity. Backwash pressure and flux is important parameter on operation of membrane system. Those are directly affected on membrane system. When backwash pressure increased from 150 kPa to 200 kPa, the result showed that fouling (pressure increase rate) changed from 3.69 kPa/h to 0.93 kPa/h and the recovery rate changed from 90.7 % to 82.0 %. Linear velocity had slightly effect on fouling. Linear velocity increased from 0.2 m/s to 0.5 m/s, the corresponding pressure rate changed from 0.93 kPa/d to 0.77 kPa/d.

발사체 충격 방식을 사용한 초음속 액체 제트의 과도 분무 형상에 관한 연구 (Transient Spray Structures of Supersonic Liquid Jet Injected by Projectile Impact Systems)

  • 신정환;이인철;김희동;구자예
    • 한국분무공학회지
    • /
    • 제17권2호
    • /
    • pp.86-93
    • /
    • 2012
  • The effects of projectile impact system on the transient spray characteristic which is supersonic liquid tip velocity were studied by experimentally. Supersonic liquid jets were generated by impact of a high speed projectile driven by a Two-stage light gas gun. A high speed camera and schlieren optical system were used to capture the spray structures of the supersonic liquid jets. In a case of nozzle assembly Type-A, expansion gases accelerate a projectile which has a mass of 6 grams from 250 m/s at the exit of the launch tube. Accelerated projectile collides with the liquid storage part, then supersonic liquid jets are injected with instantaneous spray tip velocity from 617.78 m/s to 982.54 m/s with various nozzle L/d. However, In a case of nozzle assembly Type-B which has a heavier projectile (60 grams) and lower impact velocity (182 m/s), an impact pressure was decreased. Thus the liquid jet injected at 210 m/s of the maximum velocity did not penetrate a shock wave and fast break-up was occurred. Pulsed injection of liquid column generated second shock wave and multiple shock wave.

지하철 객차 내 환기 속도가 고압 미세물분무 화재제어 시스템의 성능에 대한 실험평가 (An Experimental Evaluation for the Effect of Ventilation Velocity in Subway Train on Performance of a High Pressure Water Mist Fire Suppression)

  • 김동운;배승용;김동석;박원희;유홍선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1307-1312
    • /
    • 2007
  • This experiments are performed to investigate the effect of ventilation velocity on a high pressure water mist fire suppression in subway train. The experiment is conducted in half scale modeled train of a steel-welled enclosure (8.0m*2.4m*2.1m). The ventilation velocity is controlled by the ventilation duct through an inverter in the range of 0 to 2 m/s. The coverage-radius and an injection angle of an high pressure water mist system are measured. The mist nozzle with 7-injection holes is operated with pressure 80 bar. The heptane pool fires are used. The fire extinguishment times and the temperatures are measured for the ventilation velocities. In conclusion, because the momentum of injected water mist is more dominant than that of ventilation air, the characteristics of water mist, the fire extinguishment times and the temperatures are affected very little by ventilation velocity.

  • PDF

Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

  • Wang, Lei;Liang, Shuguo;Song, Jie;Wang, Shuliang
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.523-536
    • /
    • 2015
  • To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity ($V_r$), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When $V_r$ is less than 8, the drift magnitude of the frequency is typically positive. When $V_r$ is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When $V_r$ is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.

고점도 유체 내에서 부양하는 거품의 종말속도, 항력계수, 형태 분석 (Analysis of Terminal Velocity, Drag Coefficient and Shape of Bubble Rising in High Viscous Fluid)

  • 김진현;김정현
    • Korean Chemical Engineering Research
    • /
    • 제48권4호
    • /
    • pp.462-469
    • /
    • 2010
  • 기체와 액체가 만나는 2상 공정들은 화학공학, 생명화학공학, 환경공학, 식품공학 등에 두루 존재한다. 위와 같은 공정의 최적화를 위해서는 거품의 움직임과 형태에 대한 정확한 파악이 필요하다. 액체 내부에서 거품의 움직임은 액체의 밀도, 점도, 표면장력과 거품의 크기와 속도에 영향을 받는다. 본 논문에서는 고점도 실리콘 오일 내부에서의 거품의 움직임과 형태를 관찰하였다. 또한 국외 논문 및 저서에서 정립된 거품의 에너지 수지 식, 항력계수와 변형계수를 이용하여 거품의 종말속도, 항력계수, 변형계수, 형태를 예측해 보고 이를 실험결과와 비교해 보았다. 실험 결과 거품의 속도는 점도가 낮을 경우가 더 빨랐고, 거품의 항력계수는 점도가 클 때 더 컸다. 거품의 형태는 점도가 클 때 덜찌그러진(구형에 가까운) 형태였다. 실험결과와 국외 논문 및 저서에서 정립된 항력계수와 변형계수를 이용한 예측결과를 비교해 본 결과 Batchelor가 제시한 이론이 가장 정확한 예측을 하는 것으로 나타났다. Batchelor가 제시한 거품의 에너지 수지식, 항력계수와 변형계수를 사용하여 예측한 거품의 2차원 측면 형태는 실험에서 관찰된 거품의 2차원 측면 형태와 유사하였다.

다중판재의 고속충돌에 관한 최적설계 (Optimal Design of a Multi-Layered Plate Structure Under High-Velocity Impact)

  • 윤덕현;박명수;정동택;유정훈
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1793-1799
    • /
    • 2003
  • An optimal design of a multi-layered plate structure to endure high-velocity impact has been suggested by using size optimization after numerical simulations. The NET2D, a Lagrangian explicit time-integration finite element code for analyzing high-velocity impact, was used to find the parameters for the optimization. Three different materials such as mild steel, aluminum for a multi-layered plate structure and die steel for the pellet, were assumed. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, Johnson-Cook model and Phenomenological Material Model were used as constitutive models for the simulation. It was carried out with several different gaps and thickness of layers to figure out the trend in terms of those parameters' changes under the constraint, which is against complete penetration. Also, the measuring domain has been shrunk with several elements to reduce the analyzing time. The response surface method based on the design of experiments was used as optimization algorithms. The optimized thickness of each layer in which perforation does not occur has been obtained at a constant velocity and a designated total thickness. The result is quite acceptable satisfying both the minimized deformation energy and the weight criteria. Furthermore, a conceptual idea for topology optimization was suggested for the future work.

지진 토모그래피 방법을 이용한 남한에서의 3차원 P파 속도구조 (3-D P-wave Velocity Structure in South Korea using Seismic Tomography)

  • 박재우;민경덕;전정수;제일영
    • 자원환경지질
    • /
    • 제35권5호
    • /
    • pp.445-454
    • /
    • 2002
  • 본 연구에서는 지진 데이터를 이용한 지진 토모그래피 방법을 통해 남한 지역의 3차원 P파 속도모델을 구하였다. 구해진 3차원 속도모델은 정확한 진앙의 위치 결정과 한반도의 지하구조 연구에 이용될 수 있다. 3차원 속도모델을 구하기 위한 지진토모그래피 방법에서 보다 나은 역산 결과를 얻기 위해 초기모델로서 동시역산방법을 이용한 최소 1차원모델을 사용하였다. 최소 1차원모델의 속도는 0~l9 km사이는 6.04 km/s, 19~32 km차이는 6.45 km/s, 그리고 32~55 km사이는 7.78 km/s 였다. 최소 1차원모델을 초기값으로 하여 3차원 속도모델을 구해본 결과 1층(0~3 km) 에서는 경상분지, 영남육괴, 옥천습곡대에서 높은 속도값을 보이고, 경기육괴에서는 낮은 속도값을 보인다. 2층(3~19 km)에서 경상분지와 연일분지를 제외한 영남육괴 지역에서 높은 속도값이 분포한 반면, 경기육괴와 옥천습곡대에서 낮은 속도값이 분포한다. 3층(19~32 km)에서는 한반도 남부의 속도값은 높은 반면, 경기육괴 내의 SNU, YIN관측소를 제외한 대부분의 중부지역은 낮은 속도분포를 보인다. 4층(32 km)에서는 최대 속도값이 한반도의 중부와 남서부에, 최소 속도값이 남동부와 해안선에서 나타난다. 각 층의 깊이 분포는 중력자료에 의한 지각구조의 양상과 비교한 결과 서로 일치한다.

남성 입원환자들의 맥파속도에 따른 요통 호전도의 비교 연구 (Comparison of improvement on Low back pain depending on male inpatient's Pulse wave velocity)

  • 이진혁;설무창;민관식;이한;정호석
    • 척추신경추나의학회지
    • /
    • 제4권2호
    • /
    • pp.39-45
    • /
    • 2009
  • Objectives : The aim of this study is to compare the improvement of Low back pain (LBP) depending on male Inpatient's Brachlalankle Pulse Wave Velocity (baPWV), Method : We evaluated 35 LBP inpatients who took pulse wave velocity test during admission at Jaseng hospital from November 2008 to september 2009. We used applanation tonometry method to measure pulse wave velocity and numerical rating scale to measure patient's improvement. Result : At admission, standard deviation of normal group's NRS was $7.44{\pm}1.67$ and high risk group's was $7.57{\pm}2.09$(P=0.678). After 5 days of admission, standard deviation of normal group's NRS was $5.67{\pm}1.94$ and high risk group's was $6.00{\pm}2.17$(P=0.680). After 10 days of admission, standard deviation of normal group's NRS was $4.00{\pm}1.80$ and high risk group's was $4.95{\pm}1.96$(P=0.281). After 15 days of admission, standard deviation of normal group's NRS was $2.89{\pm}1.62$ and high risk group's was $4.10{\pm}1.92$(P=0.124). At discharge, standard deviation of normal group's NRS was $5.11{\pm}1.69$ and high risk group's was $4.86{\pm}2.08$(P=0.504). Comparison between admission and discharge, standard deviation of normal group's NRS was $5.11{\pm}1.69$ and high risk group's was $4.86{\pm}2.08$(P=0.504) Conclusion : Low back patients with high Brachialankle Pulse Wave Velocity, showed slower improvement rate compare to patients within normal rate. But statically, had no significance.

  • PDF