• Title/Summary/Keyword: High Thermal Environment

Search Result 944, Processing Time 0.035 seconds

Assessment of temperature effect in structural health monitoring with piezoelectric wafer active sensors

  • Kamas, Tuncay;Poddar, Banibrata;Lin, Bin;Yu, Lingyu
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.835-851
    • /
    • 2015
  • This paper presents theoretical and experimental evaluation of the structural health monitoring (SHM) capability of piezoelectric wafer active sensors (PWAS) at elevated temperatures. This is important because the technologies for structural sensing and monitoring need to account for the thermal effect and compensate for it. Permanently installed PWAS transducers have been One of the extensively employed sensor technologies for in-situ continuous SHM. In this paper, the electro-mechanical impedance spectroscopy (EMIS) method has been utilized as a dynamic descriptor of PWAS behavior and as a high frequency standing wave local modal technique. Another SHM technology utilizes PWAS as far-field transient transducers to excite and detect guided waves propagating through the structure. This paper first presents how the EMIS method is used to qualify and quantify circular PWAS resonators in an increasing temperature environment up to 230 deg C. The piezoelectric material degradation with temperature was investigated and trends of variation with temperature were deduced from experimental measurements. These effects were introduced in a wave propagation simulation software called Wave Form Revealer (WFR). The thermal effects on the substrate material were also considered. Thus, the changes in the propagating guided wave signal at various temperatures could be simulated. The paper ends with summary and conclusions followed by suggestions for further work.

Layering Effects on Clothing Microclimate, Clothing Insulation and Physiological Responses

  • Park, Joonhee;Yoo, Shinjung
    • International Journal of Human Ecology
    • /
    • v.14 no.2
    • /
    • pp.93-103
    • /
    • 2013
  • This study investigated the relationship of clothing microclimate and physiological responses in order to examine the layering effects on the clothing microclimate as an index to predict clothing thermal insulation ($I_{cl}$). Experiments were conducted in a $15^{\circ}C$ environment on six physically active males. Increased clothing layers resulted in higher mean temperature inside the clothing ($\bar{T}_{cl}$) and $I_{cl}$. The $I_{cl}$ had a high correlation with: $\bar{T}_{cl}$ (r = 0.556), the difference between the innermost surface temperature and the outermost surface temperature at the chest (DST) (r = 0.549) and the temperature inside clothing at the abdomen (r = 0.478). $\bar{T}_{cl}$ had the highest correlation with the temperature inside clothing at the abdomen (r = 0.889). $\bar{T}_{cl}$ also had the highest correlation with $\bar{T}_{sk}$ (r = 0.860). The results showed that the relationship between $I_{cl}$ and $\bar{T}_{cl}$ was linear (p < .01). Thermal comfort had a negative correlation with $\bar{T}_{cl-thigh}$ (r=-0.411) and $\bar{T}_{cl}$ (r = -0.323) (p < .01.)

Computational Study of Hypersonic Real Gas Flows Over Cylinder Using Energy Relaxation Method (에너지 완화법을 이용한 실린더 주위의 극초음속 실제기체 유동에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.216-217
    • /
    • 2008
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environment during their flight regimes. During reentry and hypersonic flight of these vehicles through atmosphere real gas effects come into play. The analysis of such hypersonic flows is critical for proper aero-thermal design of these vehicles. The numerical simulation of hypersonic real gas flows is a very challenging task. The present work emphasizes numerical simulation of hypersonic flows with thermal non-equilibrium. Hyperbolic system of equations with stiff relaxation method are identified in recent literature as a novel method of predicting long time behaviour of systems such as gas at high temperature. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flows. Navier-Stokes equations A numerical scheme Advection Upstream Splitting Method (AUSM) has been selected. Navier-Stokes solver along with relaxation method has been used for the simulation of real flow over a circular cylinder. Pressure distribution and heat flux over the surface of cylinder has been compared with experiment results of Hannemann. Present heat flux results over the cylinder compared well with experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

Comparative Analysis on the Surface Property of SKD 61 Die-casting Steel Using Multilayer PVD Coating (다층 PVD 코팅을 이용한 SKD 61다이캐스팅 강의 표면 특성 비교 분석)

  • Kim, Seung Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2021
  • The properties of materials which are widely used in industry fields like automobile, shipbuilding, casting, and electronics are strongly needed to have higher surface hardness, lower surface roughness, and higher compressive residual stress. As mentioned above, for the purpose of satisfying three factors, a variety of researches with respect to surface improvement have been actively studied and applied to every industry. SKD61 which is mostly used for die casting process of cold chamber method must meet a countless number of problems which are thermal, mechanical and chemical from highly specific working environment at high temperature over 600℃. Above all, in case of plunger sleeves used for die casting process, thermal fatigue has a bad effect on the surface of an inlet where molten metal is repeatedly injected. On account of it, plunger sleeves cause manufacturers to deteriorate quality of products. Therefore, in this paper, to improve the surface of an inlet of plunger sleeve, multilayer PVD coating using Ti, Cr and Mo is suggested. Furthermore, The surface characteristics such as surface roughness(Rsa, Rsq), surface hardness(HRB, HRC) and residual stress using XRD(X-ray diffractometer) of coated samples and specimens are studied and discussed.

One-Dimensional MgO Nanostructures with Various Morphologies Grown by Thermal Evaporation Method under Atmospheric Environment (대기 분위기에서 열증발법에 의해 성장된 여러 가지 형상의 일차원 MgO 나노구조)

  • Nam-Woo Kim;Jin-Su Kim;Geun-Hyoung Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.7
    • /
    • pp.279-284
    • /
    • 2023
  • One-dimensional MgO nanostructures with various morphologies were synthesized by a thermal evaporation method. The synthesis process was carried out in air at atmospheric pressure, which made the process very simple. A mixed powder of magnesium and active carbon was used as the source powder. The morphologies of the MgO nanostructures were changed by varying the growth temperature. When the growth temperature was 700 ℃, untapered nanowires with smooth surfaces were grown. As the temperature increased to 850 ℃, 1,000 ℃ and 1,100 ℃, tapered nanobelts, tapered nanowires and then knotted nanowires were sequentially observed. X-ray diffraction analysis revealed that the MgO nanostructures had a cubic crystallographic structure. Energy dispersive X-ray analysis showed that the nanostructures were composed of Mg and O elements, indicating high purity MgO nanostructures. Fourier transform infrared spectra peaks showed the characteristic absorption of MgO. No catalyst particles were observed at the tips of the one-dimensional nanostructures, which suggested that the one-dimensional nanostructures were grown in a vapor-solid growth mechanism.

An Experimental Study of the Bioelectrical Signals and Subjective Response in Changing from Unpleasant to Pleasant Temperatures in a Learning Environment (학습환경에서 불쾌적온도에서 쾌적온도로의 변화시 생체신호 및 주관적 반응에 대한 실험적 연구)

  • Im, Gwanghyun;Kim, Jinhyun;Park, Chasik;Cho, Honghyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.596-602
    • /
    • 2015
  • In this study, experiments using bioelectronic signals and questionnaire surveys were carried out in learning conditions when temperatures changed from low- and high-uncomfortable to comfortable. As a result, the stress factor Photoplethysmography (PPG) decreased, while the Root Mean Square of Standard Deviation (RMSSD) of PPG increased when the indoor temperature was changed from low- or high-uncomfortable to comfortable. Additionally, the absolute power of the ${\alpha}$-wave in the brain increased. According to the analysis of the association between the questionnaire and bioelectronic signals, the standard deviation of the stress factor as measured by pulse was closely related to the result of the thermal sensation questionnaire. In addition, it was found that the concentration on studying improved under comfortable temperatures when compared to uncomfortable temperatures.

High Temperature Creep-Fatigue Behavior of 25Cr-13Ni Stainless Steel (25Cr-13Ni 스테인리스강의 고온 크리프-피로거동에 관한 연구)

  • Song, Jeon-Young;Ahn, Yong-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • The low cycle fatigue (LCF) and creep-fatigue (hold time tension fatigue, HTTF) tests were performed on the modified 25Cr-13Ni cast stainless steel, which was selected as a candidate material for exhaust manifold in automotive engine. The exhaust manifold is subjected to an environment in which heating and cooling cycle occur due to the running pattern of automotive engine. Several types of fatigue behaviour such as thermal fatigue, thermal mechanical fatigue and creep-fatigue are belong to the main failure mechanisms. High temperature tensile test was firstly carried out to compare the sample with the traditional cast steel for the component. The low cycle fatigue and HTTF tests were carried out under the strain controlled condition with the total strain amplitude from ${\pm}0.6%$ to ${\pm}0.7%$ at $800^{\circ}C$. The hysteresis loops of HTTF tests showed significant stress relaxation during tension hold time. With the increase of tension hold time, the fatigue life was remarkably deceased which caused from the formation of intercrystalline crack by the creep failure mechanism.

Crack Initiation and Propagation at the Gas Turbine Blade with Antioxidation and Thermal Barrier Coating (내산화 및 열차폐 코팅처리 가스터빈 블레이드의 균열거동)

  • Kang, Myung-Soo;Kim, Jun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.12
    • /
    • pp.99-106
    • /
    • 2010
  • Gas turbines operation for power generation increased rapidly since 1990 due to the high efficiency in combined cycle, relatively low construction cost and low emission. But the operation and maintenance cost for gas turbine is high because the expensive superalloy hot gas path parts should be repaired and replaced periodically This study analyzed the initiation and propagation of the crack at the gas turbine blades which are coated with MCrAIY as a bond coat and TBC as a top coat. The sample blades had been serviced at the actual gas turbines for power generation. Total 7 sets of blades were analyzed and they have different EOH(equivalent operation hour). Blades were sectioned and the cracking distribution were measured and analyzed utilizing SEM(scanning electron microscope) and optical microscope. The blades which had 52,000 EOH of operation had cracks at the substrate and the maximum depth was 0.2 mm. Most of the cracks initiated at the boundary layer between TBC and bond coat and propagated down to the bond coat. Once bond coat is cracked, the base metal is exposed to the oxidation condition and undergoes notch effect. Under this environment, the crack branched at the inter-diffusion layer and propagated to the substrate. Critical cracks affecting the blade life were analyzed as those on suction side and platform.

Labyrinth Seal Design for Preventing Internal Inflow of Plating Solution (도금액의 내부 유입 방지를 위한 래버린스 시일 설계)

  • Lee, Duck-Gyu;Kim, Wan-Doo
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.256-262
    • /
    • 2017
  • Molten zinc plating is a process in which zinc is thinly coated over a metallic or non-metallic surface. It is used in various industrial fields for corrosion resistance and decoration. During the process, a steel sheet is passed through a roll that rotates inside the molten zinc liquid in the temperature range of $460^{\circ}C$ to $680^{\circ}C$, and the plating liquid flows into the roll causing abrasion and erosion of the roll surface. This problem is known to accelerate the replacement cycle of the roll and cause considerable economic loss owing to production line stoppage. Here, we propose a mechanism that operates at high temperature and pressure with a labyrinth type seal design to resolve this problem. We theoretically investigate the flow of the plating solution inside the seal and compute the minimum rotation speed required to prevent the plating solution from entering the seal chamber. In addition, we calculate the thermal deformation of the seal during operation and display thermally deformed dimensions at high temperatures. To verify the theoretical results, we perform experiments using pilot test equipment working in the actual plating environment. The experimental results are in good agreement with theoretical results. We expect our results to contribute towards the extension of the roll's life span and thereby reduce the economic losses.

Analysis of Heat Transfer considering thickness of Thermal Barrier Coating (열차폐 코팅 두께를 고려한 핀틀의 열전달 해석)

  • Jang, Han Na;Lee, Ji Hoon;Kwak, Jae Su;Cho, Jin Yeon;Kim, Jae Hoon;Ko, JunBok;Heo, Jun-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.392-394
    • /
    • 2017
  • In this study, the surface heat transfer coefficient of the 3D model of a thruster regulator in the high temperature and high pressure environment was estimated using the CFD. The thermal barrier coating (TBC) on the surface of the thruster regulator was modeled and the effect of the thickness of the TBC on the temperature of the thruster regulator was investigated. The thickness of the TBC was varied from $100{\mu}m$ to $500{\mu}m$. Results showed that the temperature of the surface and the inside the thruster regulator was lower for the thicker TBS case.

  • PDF