• Title/Summary/Keyword: High Thermal Environment

Search Result 944, Processing Time 0.036 seconds

A Study on the Estimation of Exhaust Emission by Nonroad Construction Equipments (비도로용 건설기계의 오염물질 배출량 산정에 관한 연구)

  • 정일록;엄명도;류정호;임철수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.3
    • /
    • pp.317-325
    • /
    • 1999
  • The demand of diesel engine on the construction equipment has been rapidly increased because of high thermal efficiency and fuel economy. The exhaust emission from nonroad vehicles equipped with diesel engine such as construction equipment, ship, and agricultural equipment, etc. Which are known to be harmful to human health and environment, has not been regulated in our country. But the regulation for nonroad vehicle has been already progressed in advanced country. So we investigated the contribution ratio of air pollution by construction equipment in order to establish the exhaust emission management strategy for nonroad vehicle. Based on the statistical data for construction equipment, 5 kinds of equipment are selected and tested in the engine dynamometer to determine the emission factor. And the amount of air pollutant from construction equipment are calculated by using of the emission factor and recommended exhaust emission standard for construction equipment.

  • PDF

The Studies on the Thermal Resistant Properties of $WO_3/TiO_2$ and $V_2O_5-WO_3/TiO_2$ Catalysts for NOx Reduction of Flue Gases from Industrial Boiler and on Catalyst Surface Acid Characteristics (産業用 보일러의 燃燒 排가스 中 NOx 處理를 위한 SCR 用 $WO_3/TiO_2$$V_2O_5/TiO_2$ 觸媒들의 耐熱特性과 表面 酸特性에 關한 硏究)

  • 이중범;임상윤;정석진;성준용
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • In order to suggest an efficient catalyst systems for NOx reduction of flue gases from industrial boilers, $TiO_2$ supported $WO_3-V_2O_5, V_2O_5$ and $WS_2$ catalysts were tested for the performances of NOx reduction at high reactin temperature range (250-500$^\circ$C) using a simulated flue gas system. It was found that while the proposed $WO_3/TiO_2$ and $WO_3-V_2O_5/TiO_2$ catalysts showed a significant high NOx reduction efficiency at about 350-400$^\circ$C, the conventional commercial catalyst of $V_2O_5/TiO_2$ showed a significant drop in NOx reduction efficiency due to the excessive $NH_3$ oxidation. From the measurement of surface acidities of those catalysts, it was found that the acidity are well correlated with the activities of NOx reduction. The reason of high activity of $WO_3$ series catalysts at high reaction temperature seems due to the low value of surface excess oxygen compared with that of $V_2O_5/TiO_2$ seems equivalent to the acid site of that catalyst.

  • PDF

Chinese buffer material for high-level radiawaste disposal --Basic features of GMZ-l

  • WEN Zhijian
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.236-244
    • /
    • 2005
  • Radioactive wastes arising from a wide range of human activities are in many different physical and chemical forms, contaminated with varying radioactivity. Their common feature is the potential hazard associated with their radioactivity and the need to manage them in such a way as to protect the human environment. The geological disposal is regarded as the most reasonable and effective way to safely disposal high-level radioactive wastes in the world. The conceptual model of geological disposal in China is based on a multi-barrier system that combines an isolating geological environment with an engineered barrier system. The buffer is one of the main engineered barriers for HLW repository. The buffer material is expected to maintain its low water permeability, self-sealing property, radio nuclides adsorption and retardation property, thermal conductivity, chemical buffering property, overpack supporting property, stress buffering property over a long period of time. Benotite is selected as the main content of buffer material that can satisfy above. GMZ deposit is selected as the candidate supplier for Chinese buffer material of High Level Radioactive waste repository. This paper presents geological features of GMZ deposit and basic property of GMZ Na bentonite. GMZ bentonite deposit is a super large scale deposits with high content of Montmorillonite (about $75\%$) and GMZ-l, which is Na-bentonite produced from GMZ deposit is selected as reference material for Chinese buffer material study.

  • PDF

Low-Temperature Thermal Decomposition of Industrial N-Hexane and Benzene Vapors (산업 발생 노르말헥산과 벤젠 증기의 저온 분해)

  • Jo Wan-Kuen;Lee Joon-Yeob;Kang Jung-Hwan;Shin Seung-Ho;Kwon Ki-Dong;Kim Mo-Geun
    • Journal of Environmental Science International
    • /
    • v.15 no.7
    • /
    • pp.635-642
    • /
    • 2006
  • Present study evaluated the low-temperature destruction of n-hexane and benzene using mesh-type transition-metal platinum(Pt)/stainless steel(SS) catalyst. The parameters tested for the evaluation of catalytic destruction efficiencies of the two volatile organic compounds(VOC) included input concentration, reaction time, reaction temperature, and surface area of catalyst. It was found that the input concentration affected the destruction efficiencies of n-hexane and benzene, but that this input-concentration effect depended upon VOC type. The destruction efficiencies increased as the reaction time increased, but they were similar between two reaction times for benzene(50 and 60 sec), thereby suggesting that high temperatures are not always proper for thermal destruction of VOCs, when considering the destruction efficiency and operation costs of thermal catalytic system together. Similar to the effects of the input concentration on destruction efficiency of VOCs, the reaction temperature influenced the destruction efficiencies of n-hexane and benzene, but this temperature effect depended upon VOC type. As expected, the destruction efficiencies of n-hexane increased as the surface area of catalyst, but for benzene, the increase rate was not significant, thereby suggesting that similar to the effects of the re- action temperature on destruction efficiency of VOCs, high catalyst surface areas are not always proper for economical thermal destruction of VOCs. Depending upon the inlet concentrations and reaction temperatures, almost 100% of both n-hexane and benzene could be destructed, The current results also suggested that when applying the mesh type transition Metal Pt/SS catalyst for the better catalytic pyrolysis of VOC, VOC type should be considered, along with reaction temperature, surface area of catalyst, reaction time and input concentration.

A Study on the Design of Varistor Prevented from Thermal Runaway to Improve Safety (안정성 개선을 위해 열폭주 방지 기능을 내장한 배리스터 설계에 관한 연구)

  • Jung, Tae-Hun;Shin, Hee-Sang;Cho, Sung-Min;Lee, Hee-Tae;Lee, Jun-Kyu;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.69-76
    • /
    • 2010
  • Recently, the natural environment changes drastically and the frequency of occurrence for lightning has gradually been increased. Such lightning delivers high volume of energy along the power line and communication line to the equipment in use. The high volume of energy arising from the lightning surge develops in fast velocity to destroy the facilities in power source and many other facilities in operation in sequential destruction with vast energy. This paper examines the characteristics of ZnO varistor to prevent from thermal runaway. We carry out performance evaluation of electrical characteristics on ZnO varistor. we will develop ZnO varistor Prevented from thermal explosion using test result of this paper.

Crash survival analysis and tests for the capsule of voyage data recorder (항해자료기록기 캡슐의 극한환경시험 해석 및 시험에 관한 연구)

  • Lee, Byoung-Ho;Lee, Sock-Kyu;Park, Suk-Hwan;Choi, Ji-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.32-39
    • /
    • 2011
  • The purpose of VDR capsule is to maintain a stored information securely and retrievably in the extreme environment like voyage incident. This study shows the modellings, the analyses and the experiments of the survivability test of penetration, high and low temperature fire. The capsule housing is used to protect capsule against penetration and the influences of its thickness are studied by the modelling and analysis of penetration using LS-DYNA. The phase change material and thermal insulation material are used to protect capsule against high and low temperature fire test. The thermal characteristics of various volume ratios of phase change material to thermal insulation material were conducted. Also the tests were conducted to confirm the structural and thermal reliability.

Design of LQR Controller for Thermal Management System of 5kW Solid Oxide Fuel Cell (5kW급 고체 산화물 연료전지 열관리 계통 LQR 상태 궤환 제어기 설계)

  • Jeong, Jin Hee;Han, Jae Young;Sung, Yong Wook;Yu, Sang Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.505-511
    • /
    • 2015
  • Solid oxide fuel cell operate at high temperature ($800{\sim}1000^{\circ}C$). High temperature have an advantage of system efficiency, but a weak durability. In this study, linear state space controller is designed to handle the temperature of solid oxide fuel cell system for proper thermal management. System model is developed under simulink environment with Thermolib$^{(R)}$. Since the thermally optimal system integration improves efficiency, very complicated thermal integration approach is selected for system integration. It shows that temperature response of fuel cell stack and catalytic burner are operated at severe non-linearity. To control non-linear temperature response of SOFC system, gain scheduled linear quadratic regulator is designed. Results shows that the temperature response of stack and catalytic burner follows the command over whole ranges of operations.

Development of High-insulation Packaging using Recycled PET and Comparison of Insulation Performance with Existing Styrofoam and Paper Boxes (재생페트를 이용한 고단열 패키징 개발과 기존의 스티로폼 및 종이 박스와의 단열성능 비교)

  • Ryu, Jae Ryong;Yook, Se Won;Kal, Seung Hoon;Shin, YangJae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.111-116
    • /
    • 2019
  • Thermal insulation performance of new insulation packaging made of recycled PET nonwoven (thickness : 10 mm) was verified by conducting comparative experiment with an EPS box (thickness : 25 mm) and a double wall corrugated box (thickness : 7 mm). Three ice packs (300 g) were positioned 200 mm above the bottom inside each box, all of which are placed side by side and temperature change of 2 points (5mm under middle icepack and 130 mm under middle icepack) was recorded by data logger (GL-840, Graphtec) for 16 hours under the environment of 29℃. The new packaging box showed 75% higher insulation performance than the EPS box and 180% higher than the corrugated box. In order to figure out the reason for insulation performance difference among boxes, thermal conductivities of each box material were measured using heat flow meter (HFM436 lamda, Netzsch). U-value (thermal conductivity divided by thickness) of EPS was lower than recycled pet nonwoven by 57%, which seemed to be opposite to the result of insulation test of boxes. This was explained by high water vapor transmission rate of EPS (6 times higher than PET insulation) and air pocket effect of PET insulation.

Achieving High Accuracy and Precision Inkjet Drop Placement Using Imperfect Components in an Imperfect Environment

  • Xu, Tianzong;Albertalli, David
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1660-1665
    • /
    • 2006
  • Drop placement accuracy and precision are the critical performance values of industrial ink jet deposition systems. Imperfect components and environments have severe impacts on drop placement. Litrex has identified over 120 error sources and developed engineering solutions to address the errors. In this paper, improved results using thermal compensation and stage mapping techniques are demonstrated. A recent progress in inkjet fabrication of multi-color electrophoretic display on flexible substrate with large distortion is also demonstrated.

  • PDF