• Title/Summary/Keyword: High Tension Steel

Search Result 346, Processing Time 0.024 seconds

A Study on the Characteristics of Nondestuctive Tests Including Pullout Test (인발법을 포함한 비파괴시험법에 대한 특성 비교)

  • 고훈범;정성원;음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.211-215
    • /
    • 1996
  • This paper presents comparisons of pullout load of concrete with compressive strength of cylinders and cores, pulse velocity, and rebound number. A pullout test, which is a relatively new nondestructive technique, measures with a special tension ram the force required to pullout a specially shaped steel rod whose enlarged end has been cast into a concrete block. In this study 3 concrete mixes(normal strength, high-strength & super-high-strength) were made. From each mix, one 100$\times$70$\times$20 concrete block, 24 cylinders$(\phi10mm)$were casted. Each tests were performed on the concrete blocks at 3, 7, 28, and 91days. The test data shows that the pullout test is superior to the rebond hammer and the pulse velocity measurements on the evaluation of concrete strength. The pullout test is satisfactory for estimating the strength of in situ concrete at both early and late age, and its results can be reproduced with an acceptable degree of accuracy.

  • PDF

Evaluation of High Temperature Abrasion Resistance of Spray-Coated Grate Bar (용사 코팅된 그레이트바의 고온 내마모 특성 평가)

  • Cho, Hee-Keun;Ahn, Jin-Hyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.5
    • /
    • pp.55-62
    • /
    • 2017
  • The grate bar, a component used in steel mills, is used in harsh environments where external disturbances such as high temperature, abrasion, corrosion, and impacts are present. Therefore, in this study, spray-coating was performed on the most severely affected surface to extend the lifetime of the grate bar. The thermal and mechanical properties of the sprayed coated bars were investigated based on the performances under abrasion, thermal shock, tension, and sand blasting, and the microstructures by microscope. By analyzing the thermal and mechanical properties of the uncoated original grate bar and coated grate bar and comparing them with one another, the physical performance improvement of the coated grate bar can be verified.

An Experimental Study on Bending Behaviour of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 휨거동에 관한 실험적 연구)

  • Shin, Hyun Seop;Lee, Chin Hyung;Park, Ki Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.68-77
    • /
    • 2012
  • The joint of existing steel grid composite deck is composed of lap splice of reinforcing bar with end hooks and field-placed concrete. In this study, bending tests of deck joint composed of concrete shear key and high tension bolts are carried out for the design variable, concrete shear key strengthened with steel plate or not, and test results are compared with flexural performance of the existing deck joint. Test results showed that the mechanical deck joint has about 30% ~ 60% more ultimate bending strength than the existing joint. According to analysis results of moment-curvature relationship, the initial bending stiffness of the existing deck joint is some higher than that of mechanical joint. But, after crack failure the structural performance of the existing deck joint is rapidly reduced. Furthermore, the deck joint with the strengthened shear key with steel plate has more bending moment capacity than the deck joint without strengthening. And strengthening of shear key has positive influence on the increase of bending stiffness.

Performance of steel beams at elevated temperatures under the effect of axial restraints

  • Liu, T.C.H.;Davies, J.M.
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.427-440
    • /
    • 2001
  • The growing use of unprotected or partially protected steelwork in buildings has caused a lively debate regarding the safety of this form of construction. A good deal of recent research has indicated that steel members have a substantial inherent ability to resist fire so that additional fire protection can be either reduced or eliminated completely. A performance based philosophy also extends the study into the effect of structural continuity and the performance of the whole structural totality. As part of the structural system, thermal expansion during the heating phase or contraction during the cooling phase in most beams is likely to be restrained by adjacent parts of the whole system or sub-frame assembly due to compartmentation. This has not been properly addressed before. This paper describes an experimental programme in which unprotected steel beams were tested under load while it is restrained between two columns and additional horizontal restraints with particular concern on the effect of catenary action in the beams when subjected to large deflection at very high temperature. This paper also presents a three-dimensional mathematical modelling, based on the finite element method, of the series of fire tests on the part-frame. The complete analysis starts with an evaluation of temperature distribution in the structure at various time levels. It is followed by a detail 3-D finite element analysis on its structural response as a result of the changing temperature distribution. The principal part of the analysis makes use of an existing finite element package FEAST. The effect of columns being fire-protected and the beam being axially restrained has been modelled adequately in terms of their thermal and structural responses. The consequence of the beam being restrained is that the axial force in the restrained beam starts as a compression, which increases gradually up to a point when the material has deteriorated to such a level that the beam deflects excessively. The axial compression force drops rapidly and changes into a tension force leading to a catenary action, which slows down the beam deflection from running away. Design engineers will be benefited with the consideration of the catenary action.

An Experimental Study on Flexural Behavior of RC Beams Strengthened with Hi-Strength Bars(2) (고장력 인장봉으로 보강된 RC보의 휨거동에 관한 실험적 연구(2))

  • Shin, Kyung-Jae;Kwak, Myong-Keun;Bae, Kyu-Woong;Oh, Young-Suk;Moon, Jung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.603-610
    • /
    • 2006
  • The external unbonded strengthening offers advantages in speed and simplicity of installation over other strengthening techniques. Unlike externally bonded steel plate or carbon fiber sheet, surface preparation of the concrete for installation of high-tension bar is not required and installation is not affected by environmental conditions. Anchoring pin or anchoring plate are installed at the end of beam to connect the high-tension bar to concrete beam. The deviator are used in order that supplementary external bars would follow the curvature of the tested beam. A set often laboratory tests on reinforced concrete beam strengthened using the technique are reported. The main test parameters are the section area of strengthening bar, the depth of deviator and the number of deviators. The paper provides a general description of structural behavior of beams strengthened using the technique. The test result of strengthened beam are compared with those from a reference specimen. It is shown that the reinforcing technique can provide greater strength enhancements to unstrengthened beam and that the provision of deviator enhances efficiency. The ultimate moment of specimen with two deviators was higher than that of specimens with one deviator. It is also shown that the external bars enhance strength of beams in shear.

Control of Tensile Behavior of Ultra-High Performance Concrete Through Artificial Flaws and Fiber Hybridization

  • Kang, Su-Tae;Lee, Kang-Seok;Choi, Jeong-Il;Lee, Yun;Felekoglu, Burak;Lee, Bang Yeon
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.sup3
    • /
    • pp.33-41
    • /
    • 2016
  • Ultra-high performance concrete (UHPC) is one of the most promising construction materials because it exhibits high performance, such as through high strength, high durability, and proper rheological properties. However, it has low tensile ductility compared with other normal strength grade high ductile fiber-reinforced cementitious composites. This paper presents an experimental study on the tensile behavior, including tensile ductility and crack patterns, of UHPC reinforced by hybrid steel and polyethylene fibers and incorporating plastic beads which have a very weak bond with a cementitious matrix. These beads behave as an artificial flaw under tensile loading. A series of experiments including density, compressive strength, and uniaxial tension tests were performed. Test results showed that the tensile behavior including tensile strain capacity and cracking pattern of UHPC investigated in this study can be controlled by fiber hybridization and artificial flaws.

Evaluation of Clamping Forces according to Length-to-diameter Ratios and Preserved Thread Lengths of High Strength Bolts (고력볼트의 길이-직경비 및 여유나사길이에 따른 조임력 평가 연구)

  • Kim, Sang Seup;Kim, Sung Yong;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.259-268
    • /
    • 2000
  • In the friction-type joints the external applied load is transmitted by frictional force acting on the contact area of the plates fastened by the high strength bolts. This frictional force is proportional to the product of the bolt clamping force and slip coefficient of the faying surface. But the bolt clamping force is dependent on many factors when the turn-of-nut method is used. The preserved thread length and length-to-diameter ratios are one of the major factors governing the bolt clamping force. This paper presents the correct method of high strength bolt tightening through the experiment on the mechanical properties on sets of high strength bolts in accordance with preserved thread length and length-to-diameter ratios.

  • PDF

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.

Experimental Study on the Torque Coefficient and Clamping Force of High Strength Bolts Subjected to Environmental Parameters (고력볼트 시공환경에 따른 토크계수와 체결축력에 관한 실험적 연구)

  • Lee, Hyeon Ju;Nah, Hwan Seon;Kim, Kang Seok;Kim, Jin Ho;Kim, Jin Man
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • Because the torque control method, which is also caled the clamping method in domestic construction sites, is affected by a variation of the torque coefficient, quality control of the torque coefficient is essential. This study was focused to evaluate the effects of several environmental factors and errors when installing bolts while tightening high-strength bolts. Conditioning environmental parameters include wet, rusty and exposure-to-air-only conditions. In addition, because of errors in workability such as instalation of two washers, upset washers are selected. During the tests, torque, torque coefficient, tension and angle of nut rotation were obtained using a bolt testing machine. Test specimens of four types of bolts (High-Strength Hexagon bolt on KS B 1010, Torque Shear Bolt on KS B 2819, High-Strength Hexagon bolt coated with zinc, and ASTM 490 bolt) were recomended. Based on test results, the tightening characteristics subjected to environmental parameters were investigated and compared with the results in normal condition.

Study on the Cable Wall System Applied to Reinforced Concrete Exterior (철근콘크리트구조 외장재에 케이블월 시스템 적용에 관한 연구)

  • Park, Hyun-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.579-585
    • /
    • 2017
  • Development of a facade system that can reduce load factor and costs in high-rise building construction is required. The proposed cable wall system is used as a structural support by the glass-cable and can increase openness on lower elevations and the lobby area. Its use in high-rise buildings can reduce construction costs. Without transferring directly a strong initial tension of the cable to the building frame is connected to the steel member and the reinforced concrete structures, by absorbing the initial tension of the cable, it is possible to control the occurrence of a strong concentrated loads to the structure. Comparison of load-displacement test results from the numerical analysis with the test results showed reasonable agreement, Therefore, the proposed numerical results confirm good prediction of cable behavior for the facade system.