• 제목/요약/키워드: High Temperature Heater

검색결과 285건 처리시간 0.032초

YBCO CC을 사용한 초전도전원장치의 요소특성 해석 (Characteristic analysis of components of a high temperature superconducting power supply using YBCO coated conductor)

  • 윤용수;조대호;박동근;양성은;김호민;정윤도;배덕권;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제11권3호
    • /
    • pp.40-45
    • /
    • 2009
  • Many superconductor applications such as MRI and SMES must be operated in persistent current mode to eliminate the electrical ohmic loss. This paper presents the characteristic analysis of the high temperature superconducting (HTS) power supply made of YBCO coated conductor (CC). In this research, we have manufactured the HTS power supply to charge the 0.73 mH HTS double-pancake magnet made of YBCO CC. Among the all design parameters, the heater triggerring time and magnet applying time were the most important factors for the best performance of the HTS power supply. In this paper, three-dimensional simulation through finite element method (FEM) was used to study the heat transfer in YBCO CC and the magnetic field of the magnetic circuit. Based upon these results, the final operational sequence could be determined to generate the pumping current. In the experiment, the maximum pumping current reached about 16 A.

화물 컨테이너용 액상 백 내부 PCM의 용융 과정에 대한 열유동 특성 해석 (Heat and Flow Characteristics During Melting Process of a PCM Inside a Liquid Flexitank for Cargo Containers)

  • 쑨리롱;김준현;나재훈;성재용
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.6-17
    • /
    • 2024
  • This study examined the natural convection heat flow characteristics of the melting process of PCM (palm oil) inside a liquid flexitank(bag) for a cargo container. A film heating element was installed on the bottom of the container, and numerical analysis was performed under heat flux conditions of 1,000 to 4,000 W/m2. As a result, the melt interface of the PCM rises to a nearly horizontal state over time. In the initial stage, conduction heat transfer dominates, but gradually waves at the cell flow and melt interfaces are formed due to natural convection heat transfer. As melting progresses, the Ra number increases parabolically, and the Nu number increases linearly and has a constant value. The Nu number rises slowly under low heat flux conditions, whereas under high heat flux conditions, the Nu number rises rapidly. As the heat flux increases, the internal temperature oscillation of the liquid phase after melting increases. However, under high heat flux conditions, excess heat exceeding the latent heat is generated, and the temperature of the molten liquid is raised, so the increase in melting rate decreases. Therefore, the appropriate heating element specification applied to a 20-ton palm oil container is 2,000 W/m2.

MEMS 기반 흑체 시스템의 온도 균일도 및 추정 정확도의 수치 해석적 검토 (Numerical Investigation of Temperature Uniformity and Estimation Accuracy for MEMS-based Black Body System)

  • 채봉건;김태규;이종광;강석주;오현웅
    • 한국항공우주학회지
    • /
    • 제44권5호
    • /
    • pp.455-462
    • /
    • 2016
  • 적외선 검출기와 같은 우주용 영상센서는 작동 유무 및 시간경과에 따라 센서의 응답특성이 변하기 때문에 영상품질이 저하된다. 이러한 영상센서의 비균일 응답특성을 보정하기 위하여 궤도상에서 보정용 흑체시스템을 이용하여 주기적인 보정을 실시 할 수 있도록 해야 한다. 본 논문에서는 저온에서 고온에 이르는 다양한 기준온도에서의 높은 온도균일도 확보 및 흑체의 대표표면온도 추정이 용이하고, 초경량, 저전력, 고정밀도의 흑체 시스템을 구현하기 위해 MEMS(Micro Electro Mechanical Systems)기반의 흑체시스템을 제안하였으며, 열해석을 통해 성능을 입증하였다.

압출성형 에너지가 녹말의 호화에 미치는 영향 (Effect of the Energy of Extrusion on the Starch Gelatinization)

  • 정문영;이승주
    • 한국식품과학회지
    • /
    • 제29권1호
    • /
    • pp.72-76
    • /
    • 1997
  • 압출성형기의 모터에너지는 자가발열 열에너지와 기계에너지로 전환되며 히터에너지는 열에너지로 공급되는데 각 에너지가 녹말의 호화에 미치는 영향을 분석하였다. 저온$({\leq}80^{\circ}C)$ 압출성형조건에서 자가발열 에너지는 낮은 수분함량의 분체 마찰에 의한 것과 높은 수분함량의 점성에 의한 것으로 구분할 수 있었으며 분체 마찰에 의한 열에너지가 호화에 더 효과적임을 알 수 있었다. 또한 모터에너지에서 자가발열되고 남은 순수한 기계에너지의 효과를 상대기계에너지로 평가한 결과, 높은 수분함량$({\geq}33%)$ 조건의 호화는 상대기계에너지의 변화에 크게 의존하며 낮은 수분함량$({\leq}30%)$의 경우는 거의 영향을 받지 않는 것으로 나타났다.

  • PDF

풀 핵비등시 단일 기포 성장에 대한 벽면 과열도의 영향에 관한 연구 (Wall Superheat Effect on Single Bubble Growth During Nucleate Boiling at Saturated Pool)

  • 김정배;이한춘;김무환
    • 대한기계학회논문집B
    • /
    • 제29권5호
    • /
    • pp.633-642
    • /
    • 2005
  • Nucleate pool boiling experiments for R11 under a constant wall temperature condition were carried out. A microscale heater array was used for the heating and the measurement of high temporal and spatial resolution by the Wheatstone bridge circuit. Very sensitive heat flow rate data were obtained by the control for the surface condition with high time resolution. The measured heat flow rate shows a discernable peak at the initial growth stage and reaches an almost constant value. In the thermal growth region, bubble shows a growth proportional to $t^{\frac{1}{5}}$. The bubble growth behavior is analyzed with a dimensionless parameter to compare with the previous results in the same scale. As the wall superheat increases, the departure diameter and the departure time increase, and the waiting time decreases. But the asymptotic growth rate is not affected by the wall superheat change. The effect of the wall superheat is resolved into the suggested growth equation. Dimensionless parameters of time and bubble radius characterize the thermal growth behavior well, irrespective of wall condition. The comparison between the result of this study and the previous results shows a good agreement at the thermal growth region. The quantitative analysis for the heat transfer mechanism is conducted with the measured heat flow rate behavior and the bubble growth behavior. The required heat flow rate for the volume change of the observed bubble is about twice as much as the instantaneous heat flow rate supplied from the wall.

Far Infrared Emissivity of Wood Material - Comparing the Three Heat Transfer Modes of Wood Box and Aluminum Box

  • Lee, Hwa-Hyoung;Bender, Donald A.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제37권5호
    • /
    • pp.440-450
    • /
    • 2009
  • In case of wood flooring, the high emissivity would be one of the most important properties especially as the cover material of underfloor heating system. The FIR (Far Infrared) materials such as wood emit FIR energy by heating, which has been used as the medical therapy such as dry sauna. This research investigated the emissivity and the emission power of wood composites by comparing the amount of the three heat transfer modes transferred by infrared radiation which came from the increased temperature of the bottom board of the plywood box by the heater. The results showed the value of radiation mode was the highest mode for the plywood box, and the convection mode was the main mode for the aluminum box. The rate of convection was 81.8% in the aluminum box and 48.2% in the plywood box, respectively. In case of the rate of radiation, the aluminum box showed only 15.4% and the plywood box showed 51%. The emissivity and the emission power of birch plywood showed the same values as those of wood. The amount of energy required for the temperature rising of water within vial in the aluminum box and in the plywood box were 3.32 kJ and 6.70 kJ respectively, which showed that the vial temperature of the plywood box was two times higher than that of the aluminum box.

전산해석에 의한 자동차용 HVAC 시스템의 성능 연구 (A Numerical Study for Performance of Automotive HVAC System)

  • 이대웅;유성연
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1084-1091
    • /
    • 2004
  • In automotive air handling system, mixing of air streams by the cooler and the heater affects the comfort of cabin room. In the present study, computer-aided analysis is done to improve the thermal comfort and for the optimal design of automotive HVAC system. The simulation software used was FLUENT, and complicate geometries were created by three dimensional CAD. Air flow volume, fir distribution rate and temperature controllability and temperature differences between upper and lower discharge air are analyzed through numerical simulation at vent, floor and defrost mode. Also, velocity vector of sirocco fan is investigated through the scroll housing. The velocity vector magnitude is larger at lower region of fan than that at any other regions. Recirculation and disturbance of air is relatively high near the cut-off edge in the scroll housing. By using the results of this study, the time for prototype production can be reduced and timely decisions can be made to determine initial design directions.

태양열 해수담수화를 위한 증발식 MEMS(Multi-Effect-Multi-Stage)담수기 성능 실험 연구 (Experimental Study on Performance of MEMS(Multi-Effect-Multi-Stage) Distiller for Solar Thermal Desalination)

  • 주홍진;전용한;곽희열
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.91-98
    • /
    • 2013
  • In this study, we have carried out development and performance evaluation of optimized MEMS(Multi-Effect-Multi-Stage) fresh water generator with $7m^2/day$ for solar thermal desalination system. The developed MEMS was composed of high temperature part and low temperature part. This arrangement has the advantage of increasing the availability of solar thermal energy. The MEMS consists of 2 steam generators, 5 evaporators, and 1 condenser. Tubes of heat exchanger used for steam generators, evaporators and condenser were manufactured by corrugated tubes. The performance of the MEMS was tested through in-door experiments, using an electric heater as heat source. The experimental conditions for each parameters were $20^{\circ}C$ for sea water inlet temperature to condenser, $8.16m^2$ /hour sea water inlet volume flow rate, $70^{\circ}C$ for hot water inlet temperature to generator of high temperature part, 3.6 4.8, 6.0 $m^2/hour$ for hot water inlet volume flow rate. As a result, The developed MEMS was required about 85 kW heating source to produce $7m^2/day$ of fresh water. It was analyzed that the performance ratio of MEMS was about 2.6.

A Review of EOS Thermal Control Logic for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.452-455
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. EOS (Electro-Optic System) for MSC mainly consists of PMA (Primary Mirror Assembly), SMA (Secondary Mirror Assembly), HSTS (High Stability Telescope Structure) and DFPA (Detector Focal Plane Assembly). High performance of EOS makes it possible for MSC system to provide high resolution and high quality ground images. Temperature of the EOS needs to be controlled to be in a specific range in order not to have any thermal distortion which can cause performance degradation. It is controlled by full redundant CPU based electronics. The validity of thermistor readings can be checked because a few thermistors are installed on each control point on EOS. Various kinds of thermal control logics are used to prevent 'Single Point Failure'. Control logic has a few set of database in order not to be corrupted by SEU (Single Event Upset). Even though the thermal control logic is working automatically, it can also be monitored and controlled by ground-station operator. In this paper, various ways of thermal control logic for EOS in MSC will be presented, which include thermal control mode and logic, redundancy design and status monitoring and reporting scheme.

  • PDF

SPS 소결에 의한 $SiC-ZrB_2$ 도전성 세라믹 복합체 특성 (Properties of $SiC-ZrB_2$ Electroconductive Ceramic Composites by Spark Plasma Sintering)

  • 주진영;이희승;조성만;이정훈;김철호;박진형;신용덕
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1757-1763
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 20, 25[vol.%] Zirconium Diboride(hereafter, $ZrB_2$) powders as a second phase to Silicon Carbide(hereafter, SiC) matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by Spark Plasma Sintering(hereafter, SPS) were examined. Reactions between ${\beta}-SiC$ and $ZrB_2$ were not observed in the XRD analysis. The relative density of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 90.93[%], 74.62[%], 74.99[%] and 72.61[%], respectively. The XRD phase analysis of the electroconductive SiC ceramic composites reveals high of SiC and $ZrB_2$ and low of $ZrO_2$ phase. The lowest flexural strength, 108.79[MPa], shown in SiC+15[vol.%] $ZrB_2$ composite and the highest - 220.15[MPa] - in SiC+20[vol.%] $ZrB_2$composite at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites moves in accord with that of the relative density. The electrical resistivities of mono SiC, SiC+15[vol.%]$ZrB_2$, SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ composites are 4.57${\times}10^{-1}$, 2.13${\times}10^{-1}$, 1.53${\times}10^{-1}$ and 6.37${\times}10^{-2}$[${\Omega}$ cm] at room temperature, respectively. The electrical resistivity of mono SiC, SiC+15[vol.%]$ZrB_2$. SiC+20[vol.%]$ZrB_2$ and SiC+25[vol.%]$ZrB_2$ are Negative Temperature Coefficient Resistance(hereafter, NTCR) in temperature ranges from 25[$^{\circ}C$] to 100[$^{\circ}C$]. The declination of V-I characteristics of SiC+20[vol.%]$ZrB_2$ composite is 3.72${\times}10^{-1}$. It is convinced that SiC+20[vol.%]$ZrB_2$ composite by SPS can be applied for heater or electrode above 1000[$^{\circ}C$]