• Title/Summary/Keyword: High Temperature Heater

Search Result 285, Processing Time 0.028 seconds

Experimental Study on the Dependence of Variation in Performance of a High-Temperature Generator on Its Operating Conditions (운전조건 변화가 고온재생기의 성능에 미치는 영향에 관한 실험적 연구)

  • Bae, Kyungjin;Kwak, Myoungseok;Cho, Honghyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.389-397
    • /
    • 2014
  • An absorption chiller-heater using only a natural refrigerant hardly causes any environmental pollution. In an absorption chiller-heater, the performance of its high-temperature generator, which uses exhaust gases, is essential to achieving superior system performance. To investigate the performance of such a high-temperature generator, a laboratory-scale high-temperature generator working with exhaust gases was designed and tested. Changes in the performance of the high-temperature generator as a function of inlet conditions of the absorbing solution, such as air inlet temperature and mass flow, were investigated. It was observed that when the air mass flow rate ratio was increased from 80% to 120%, the heat capacity was increased by 30%, 33%, 34%, and 37%, respectively. Additionally, when the air inlet temperature was elevated from $170^{\circ}C$ to $210^{\circ}C$ for absorption solution concentrations of 56%, 55%, 545, and 53%, the heat capacity increased by 140%, 160%, 220%, and 224%, respectively.

Characteristics of the Spray and Combustion in the Liquid Jet (고온, 고속기류 중에 수직 분사되는 연료제트의 분무 및 연소특성)

  • Youn, H.J.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.12-17
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liguid jet injected transversely into the subsonic vitiated airstream, which is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length and air temperature of the combustor became longer. Combustion efficiency increased when the length of the combustor was long and the air temperature was high. Especially, stable flame region is enlarged when the length of the combustor was long and the air temperature was high. Type Abstract here. Type Abstract here.

  • PDF

An Experimental Study on Bubbles Growth on Microheater (마이크로 히터에서의 기포 생성에 관한 실험적 연구)

  • Ko, Seung-Hyun;Kim, Shin-Kyu;Kim, Ho-Young;Jang, Young-Soo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1909-1914
    • /
    • 2003
  • Bubble growth on microheater has been experimentally investigated in this study. The experiment was performed using platinum micro heaters having dimensions of $100{\times}10{\times}0.2{\mu}m^3$ with constant heat flux. A high speed video camera was used to observe bubble growth at 250 frames per second. Microheater temperature was measured at the rate of 300Hz with a data acquisition system. When heater temperature was $139^{\circ}C$ a bubble was nucleated in the liquid FC-72. The temperature profiles and the high speed camera images were combined to explain heat transfer and bubble growth on microheater.

  • PDF

Experimental Analysis of a Supersonic Plasma Wind Tunnel Using a Segmented Arc Heater with the Power Level of 0.4 MW (0.4 MW 급 분절형 아크 히터를 이용한 초음속 플라즈마 풍동 특성 실험)

  • Kim, Min-Ho;Lee, Mi-Yeon;Kim, Jeong-Soo;Choi, Chea-Hong;Seo, Jun-Ho;Moon, Se-Yeon;Hong, Bong-Guen
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.700-707
    • /
    • 2013
  • Experimental analyses on a supersonic plasma wind tunnel of CBNU (Chonbuk National University) were carried out. In these experiments, a segmented arc heater was employed as a plasma source and operated at the gas flow rates of 16.3 g/s and the total currents of 300 A. The input power reached ~350 kW with the torch efficiency of 51.4 %, which is defined as the ratio of total exit enthalpy to the input power. The pressure of plasma gas in the arc heater was measured up to 4 bar while it was down to ~45 mbar in a vacuum chamber through a Laval nozzle. During this conversion process, the generated supersonic plasma was expected to have a total enthalpy of ~11 MJ/kg from the measured input power and torch efficiency. In addition to the measurement of total enthalpy, a cone type probe was inserted into the supersonic plasma flow in order to estimate the angle between shock layer and surface of the probe. From these measurements, the temperature and the Mach number of the supersonic plasma were predicted as ~2,950 K and ~3.7, respectively.

Thermal Frequency Tuning of Microactuator with Polymer Membrane (온도 변화를 이용한 고분자 막 마이크로 액추에이터의 공진 주파수 튜닝)

  • Lee, Seung-Hoon;Lee, Seok-Woo;Kwon, Hyuk-Jun;Lee, Kwang-Cheol;Lee, Seung-S.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1857-1862
    • /
    • 2008
  • Resonant frequency tuning of micro devices is essential to achieve performance uniformity and high sensitivity. Previously reported frequency tuning methods using electrostatic force or mass deposition are not directly applicable to non-conducting polymer devices and have limitations such as dielectric breakdown or low tunable bandwidth. In this paper, thermally frequency-tunable microactuators with poly-dimethylsiloxane membranes are proposed. Permanent and/or nonpermanent frequency tunings are possible using a simple temperature control of the device. Resonant frequency and Q-factor variations of devices according to temperature change were studied using a micro heater and laser Doppler vibrometer. The initial resonant frequencies determined by polymer curing and hardening temperatures are reversibly tuned by thermal cycles. The measured resonant frequency of 9.7 kHz was tuned up by ${\sim}25%$ and Q-factor was increased from 14.5 to 27 as the micro heater voltage increased from 0 to 70 V.

  • PDF

The Characteristics of Flow Sensor Fabricated by MgO Medium Layer (MgO 매개층을 이용하여 제작된 유량센서의 특성)

  • Hong, Seok-Woo;Jang, Soo;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3319-3321
    • /
    • 1999
  • Pt-RTD and Micro Heater was fabricated by using MgO as medium layer in order to improve adhesion of Pt thin-films to $SiO_2$ layer, MgO layer improved adhesion of Pt thin-films to $SiO_2$ layer without any chemical reactions to Pt thin-films under high annealing temperatures, In the analysis of properties of Pt-RTD, TCR value had 3927 $ppm/^{\circ}C$ and liner in the temperature range of $25-400^{\circ}C$. The temperature of Pt micro-heater had up to $400^{\circ}C$ with 1.5watts of the heating power. In investigating output characteristics of flow sensors output voltages increased as gas flow rate and its conductivity increased due to increase of heat-loss from sensor to external. Output voltage was 82 mV at $N_2$ flow rate of 2000sccm, heating power of 1.2W.

  • PDF

Study on the Heat Performance of CNT/carbon Fiber Plane Heater (탄소계 면상발열체 발열 특성 연구)

  • Ko, Yeongung;Kang, Yeongsik;Chung, Yongsik
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.65-71
    • /
    • 2020
  • Electrical energy is used for heating and cooling because electric cars do not have engines and cooling water. The downside is that when the heating and cooling system is applied to electric vehicles, about 40 percent of the energy is spent on heating and cooling, which is less efficient in winter. This has increased demand for electric vehicle battery efficiency. In this study, the condensation and dispersion of carbon nanotubes were controlled, and carbon fibers and composite slurry were manufactured without binders to manufacture paper. Manufactured by content showed the highest heat generation characteristic at 143℃ with a carbon fiber content ratio of 20wt% and confirmed that the heat temperature rises with increasing pressure. The plane heaters made through this study can be applied to a variety of products other than electric vehicles because they can be simplified by process and high temperature.

Computer Simulation of an Automotive Engine Cooling System (자동차 엔진 냉각시스템의 컴퓨터 시뮬레이션)

  • 원성필;윤종갑
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.58-67
    • /
    • 2003
  • An automotive engine cooling system is closely related with overall engine performances, such as reduction of fuel consumption, decrease of air pollution, and increase of engine life. Because of complex reaction between each component, the direct experiment, using a vehicle, takes high cost, long time, and slow response to the system change. Therefore, a computer simulation would provide the designer with an inexpensive and effective tool for design, development, and optimization of the engine cooling system over a wide range of operating conditions. In this work, it has been predicted the thermal performance of the engine cooling system in cases of stationary mode, constant speed mode, and city-drive mode by mathematical modelling of each component and numerical analysis. The components are engine, radiator, heater, thermostat, water pump, and cooling fans. Since the engine model is the most important, that is divided into eight sub-sections. The volume mean temperature of eight sub-sections are simultaneously calculated at a time. For detail calculation, the radiator and heater are also divided into many sub-sections like control volumes in finite difference method. Each sub-section is assumed to consist of three parts, coolant, tube with fin, and air. Hence it has been developed the simulation program that can be used in case of design and system configuration changes. The overall performance results obtained by the program were desirable and the time-traced tendencies of the results agreed fairly well with those of actual situations.

Development of Environmental Control System for High-Quality Shiitake Mushroom (Lentinus edodes (Berk.) Sing.) Production

  • Kwon, Jin-Kyung;Kim, Seung-Hee;Jeon, Jong-Gil;Kang, Youn-Ku;Jang, Kab-Yeol
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.342-351
    • /
    • 2018
  • Purpose: Recently, an increasing number of farms have been cultivating shiitake mushrooms using a sawdust substrate and a cooler/heater. In this study, an attempt was made to develop an environmental control system using a heat pump for cultivating high-quality shiitake mushrooms. Methods: An environmental control system, consisting of an air-to-water type heat pump, a thermal storage tank, and a radiator in a variable opening chamber, was designed and fabricated. The system was also installed in the cultivation facility of a farm cultivating shiitake mushrooms so as to compare the proposed control system with a conventional environmental control system using a cooler-condensing unit and an electric hot water boiler. Results: The uniformity of the environment was analyzed through environment measurements taken at several positions inside the cultivation facility. It was determined that the developed environmental control system is able to control the variations in temperature and relative humidity to within 1% and 3%, respectively. In addition, a maximum temperature difference of $30^{\circ}C$ (maximum of $35^{\circ}C$, minimum of $5^{\circ}C$) and a maximum relative humidity difference of 30% (maximum of 90%, minimum of 60%) can be attained within 30 min inside the cultivation facility through the cooling of the heat pump and heating of the radiator in a variable opening chamber. Thus, the developed control system can be used to cultivate high-quality shiitake mushrooms more effectively than a conventional cooler and heater. Conclusions: In comparison with a conventional environmental control system, the developed system decreased the yield of ordinary mushrooms by 65%, and increased that of high-quality mushrooms by 217%. This corresponds to a 16% increase in gross farm income. Consequently, the developed system is expected to improve the income of shiitake mushroom cultivating farms.

Optimum Condition of Spinning for Rayon-like Yarn (Rayon-like 섬유의 최적 방사 조건)

  • Ahn, Young-Moo
    • Journal of Fashion Business
    • /
    • v.12 no.1
    • /
    • pp.120-128
    • /
    • 2008
  • Rayon fiber as clothing material has silk-like property which relates to other synthetic fibers. It has many advantages that is required to women's clothes. However rayon has many shortcomings. Therefore this research is to spin rayon-like polyester which has high contraction property to be synthesized by previous research to solve those shortcomings and to maintain advantages of rayon. The contraction ratio of regular polyester is 30% and the contraction ratio of this synthesized polyester is over 60%. The spinning temperature of regular polyester ranges from $285^{\circ}C$ to $300^{\circ}C$. However, this copolymer is set range from $270^{\circ}C$ to $290^{\circ}C$, which is $10^{\circ}C$ less than regular polyester due to decreasing melting temperature. The spinning velocity effects the tensile strength and elongation of yarn magnificently. The high velocity of spinning makes yarn highly oriented, increases the tensile strength and decreases the elongation. This research defines the condition as following; draw ratio 2.734, First roller temperature $85^{\circ}C$, Slit heater temperature $175^{\circ}C$.