• Title/Summary/Keyword: High Temperature Hardness

Search Result 986, Processing Time 0.031 seconds

Influence of Gas Composition and Treatment Time on the Surface Properties of AISI 316L Austenitic Stainless Steels During Low-Temperature Plasma Nitrocarburizing Treatment (AISI 316L강의 저온 플라즈마침질탄화처리 시 가스조성과 처리시간이 표면특성에 미치는 영향)

  • Lee, In-Sup
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.716-721
    • /
    • 2009
  • The major drive for the application of low-temperature plasma treatment in nitrocarburizing of austenitic stainless steels lies in improved surface hardness without degraded corrosion resistance. The low-temperature plasma nitrocarburizing was performed in a gas mixture of $N_{2}$, $H_{2}$, and carbon-containing gas such as $CH_{4}$ at $450^{\circ}C$. The influence of the processing time (5~30 h) and $N_{2}$ gas composition (15~35%) on the surface properties of the nitrocarburized layer was investigated. The resultant nitrocarburized layer was a dual-layer structure, which was comprised of a N-enriched layer (${\gamma}_N$) with a high nitrogen content on top of a C-enriched layer (${\gamma}_C$) with a high carbon content, leading to a significant increase in surface hardness. The surface hardness reached up to about $1050HV_{0.01}$, which is about 4 times higher than that of the untreated sample ($250HV_{0.01}$). The thickness of the hardened layer increased with increasing treatment time and $N_{2}$ gas level in the atmosphere and reached up to about $25{\mu}m$. In addition, the corrosion resistance of the treated samples without containing $Cr_{2}N$ precipitates was enhanced than that of the untreated samples due to a high concentration of N on the surface. However, longer treatment time (25% $N_{2}$, 30 h) and higher $N_{2}$ gas composition (35% $N_{2}$, 20 h) resulted in the formation of $Cr_{2}N$ precipitates in the N-enriched layer, which caused the degradation of corrosion resistance.

Effects of Storage Methods and Periods on Root Hardness and Content of Saponin in Platycodon grandiflorum Radix (저장방법과 기간이 도라지 뿌리의 경도와 사포닌함량 미치는 영향)

  • Lee, Byung-Jin;Shin, Young-Yook;Lee, Shin-Woo;Chun, Hyun-Sik;Cho, Young-Son
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.134-138
    • /
    • 2014
  • The research was conducted to provide basic information for store temperature which were low and room temperature and packing methods which were vacuum, packing and nitrogen of 3 year-old Platycodon grandiflorum. We investigated hardness and content of saponins, 1) platycodin D3, 2) polygalacin D and 3) deapioplatycodin D, in Platycodon grandiflorum and hardness of Platycodon grandiflorum, which were reduced by increasing storage period and decreased with increasing storing temperature, respectively. The packed storing method was better than others storing methods in low temperature. The high root hardness was significantly related with storing temperature and methods. The content of saponins in Platycodon grandiflorum, i.e., platycodin D3 and polygalacin D were reduced during storing period, however, the content of deapioplatycodin D was increased during storing period.

Determination of Heat Treatment Condition for Hot Press Formed Automotive Flex Plate (자동차용 플렉스 플레이트 제조를 위한 핫프레스 포밍 열처리 조건 최적화)

  • Park, I.H.;Lee, M.G.;Kim, S.J.;Jeong, W.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.186-189
    • /
    • 2008
  • The flex plate, an automotive part which mounts to the automotive engine to transfer torque to transmission, should have considerable hardness and shape accuracy. As a way to produce the flex plate, the hot press forming technology which takes advantages of high formability at elevated temperature, enhanced strength and shape stability was introduced. Therefore, as one of major process parameters the heat treatment condition should be determined to obtain appropriate hardness in the range of manufacturer's specifications. In this study, two heat treatments, austempering and quenching and tempering (QT), were compared as feasible conditions fur the hot press forming of high-carbon tool steel and the hardness and toughness after heat treatments were evaluated. The study showed that both heat treatments resulted in improved hardness but only quenching and tempering showed practicable range of toughness.

  • PDF

Microstructural Characteristics of Thermally Sprayed WC-Co Coatings (Thermally Sprayed WC-Co 코팅층의 미세조직 및 특성)

  • Kang, Hee-Soo;Baik, Kyeong-Ho
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • The degree of WC decomposition and hardness of thermally sprayed WC-Co coatings are important factors determining the wear resistance of the coatings. In order to minimize the degree of decomposition and to increase hardness, the effects of processing parameters of high velocity oxyfuel(HVOF) spraying on various characteristics of nanostructured WC-12Co coating have been evaluated by an experimental design method. The HVOF sprayed WC-12Co coatings consisted of various carbide phases including WC, $W_2C$ and $W_3Co_3C$, with a much reduced carbon content. The degree of WC decomposition and decarburization was affected by changing barrel length and spray distance. The hardness of WC-Co coatings was strongly related to droplet temperature at substrate, and increased with increasing fuel addition and/or decreasing spray distance. The effective control of processing parameters was discussed in detail for manufacturing a high performance WC-Co coating.

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic (MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Shin, Hyo Soon;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

Sintering Behavior of Zircon with SiO2 (Silica가 첨가된 지르콘 소결거동)

  • Lee, Keun-Bong;Kang, Jong-Bong
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.604-609
    • /
    • 2008
  • The sintering behavior of zircon with silica was investigated. Zircon with 5 vol% of sedimentation $SiO_2$ resulted in the apparent density of $4.45\;g/cm^3$, the diametral tensile strength of $12.125\;kgf/cm^2$, and the micro Vickers hardness of 1283 HV. The dissociation temperature and mechanical characteristics of the $ZrSiO_4$ were changed with different kinds of $SiO_2$. $SiO_2$ addition prevented dissociation of $ZrSiO_4$. Zircon with 5 vol% of sedimentation $SiO_2$ and with 5 vol% of fused $SiO_2$ resulted in increased diametral tensile strength and increased micro Vickers hardness by suppression of $ZrSiO_4$ dissociation and low temperature liquid $SiO_2$ formation. Zircon with fumed $SiO_2$ and quartz $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of cristobalite and quartz phase formation and high temperature liquid $SiO_2$ formation. Zircon with 10 vol% of $SiO_2$ resulted in decreased diametral tensile strength and decreased micro Vickers hardness because of weak particle coupling due to excess formation of liquid $SiO_2$.

Microstructures and Hardness Distributions of a Large-sized High Strength H-sectional Steel with Both V and Nb (V, Nb 첨가 고강도 대형 H 형강의 부위별 미세조직과 경도 분포)

  • Ha, Yangsoo;Jung, Jae-Gil;Lee, Young-Kook
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.2
    • /
    • pp.59-65
    • /
    • 2013
  • The microstructures and hardness distributions of a large-sized high strength H-sectional steel with both V and Nb were systematically examined. The outer surface of the flange part was composed of martensite and bainite due to faster cooling, and had a high hardness value of approximately 310 Hv. However, the amounts of ferrite and pearlite increased and the hardness decreased with increasing the distance from the outer surface at the flange part, except the inner surface. High hardness value of about 290 Hv was measured at the upper surface of the web part having martensite and bainite. The hardness drastically decreased with increasing the web thickness, and then greatly rose again at the lower surface due to bainite formation caused by fast air cooling. The hardness of the flange part was higher than that of the web part due to the larger amount of low-temperature transformed phases, except for the lower surface of the web part. Nb-rich precipitates of 30 to 50 nm and V-rich precipitates less than 20 nm were observed at both flange and web parts. However, the particle size was smaller at the flange part than the web part, resulting in the higher strength of the flange part.

A Vegetation Characteristics of a Cut-Slope Affected by Seeding Periods of the Winter Season (동절기 파종시기에 따른 훼손비탈면의 녹화특성)

  • Kim, Jae-Hwan;Shim, Sang-Ryul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.29-39
    • /
    • 2009
  • Research was initiated to investigate a vegetation characteristics of the winter season by seeding periods. 3 seeding periods (Mid-December seeding plot, Late January seeding plot and Early March seeding plot) and 3 zones (the top zone, the middle zone and the bottom zone) in each plot were treated with 3 replications on the experimented slope. Data such as vegetation coverage (%), soil hardness (MPa), temperature ($^{\circ}C$) and moisture (%) content were analyzed. The vegetation coverage was high in Early March seeding plot, medium in Mid-December, and low in Late January seeding plot. Early March seeding plot was effective in moisture content, soil hardness, and temperature for the growth of vegetation when compared to Late January seeding plot and Mid-December seeding plot. From the standpoint of coverage ratio of plant species, the coverage of Dianthus sinensis and Albizzia julibrissin were high in the Late January seeding plot whereas the coverage of Lotus corniculatus and Cool-season turfgrass were high in Early March seeding plot. These results indicated that the high vegetation coverage of Dianthus sinensis and Albizzia julibrissin in Early March seeding plot was caused by scarification during winter season. There was no difference observed in plant height regardless of seeding periods except in early surveying time of May and June after seeding. As far as each zone of the plot was concerned, the vegetation coverage was high. in the bottom zone, medium in the middle zone and low in the top zone. The bottom area of the experimented slope was high in moisture content when compared to the middle zone and the top zone.

A Study on High Frequency Induction Hardening of S45C Specimen by FEA and Experiment (유한요소해석 및 실험에 의한 S45C 시편의 고주파 유도경화에 관한 연구)

  • Park, Kwan-Seok;Choi, Jin-kyu;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2018
  • In this study, we proposed a high frequency induction hardening analysis method based on electromagnetic-thermal co-simulation. In the high frequency induction heating analysis, the results of the finite element analysis (FEA) (considering the change of the material property and the cooling factor according to the temperature) and those of the high frequency induction hardening experiment (using the S45C specimen) were compared. The hardness of the S45C specimens was measured using the micro Vickers hardness test to determine the depth of hardening. The measurement results were then compared with the results of FEA. The result of high frequency induction heating analysis showed that the temperature was more than $750^{\circ}C$, which is the A2 transformation point of S45C, while the temperature during quenching was below $200^{\circ}C$. The results showed that the difference of the depth of hardening between the FEA and the experiment is 0.2mm.

Processing of ta-C Protective Films on Mold for Glass Lens (유리렌즈 성형용 금형의 ta-C 보호 필름 제조에 관한 연구)

  • Oh, Seung-Keun;Kim, Young-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.5
    • /
    • pp.213-219
    • /
    • 2011
  • Recently aspheric lenses are widely used for superpricision optical instruments, such as cellular phone camera modules, digital cameras and optical communication modules. The aspherical lenses are processed using mold core under high temperature compressive forming pressure. It is imperative to develop superhard protective films for the life extension of lens forming mold core. Especially ta-C films with higher $sp^3$ fractions receive attentions for the life extension of lens forming mold and, in turn, the cost reduction of lenses due to their suprior high temperature stability, high hardness and smooth surfaces. In this study ta-C films were processed on WC mold as a function of substrate bias voltage using FVA (Filtered Vacuum Arc) method. The processed films were characterized by Raman spectroscopy and nano-indentation to investigate bonding nature and hardness, respectively. The film with maximun 87% of $sp^3$ fraction was obtained at the substrate bias voltage of -60 V, which was closest to ta-C film. ta-C films showed better high temperature stability by sustaining relatively high fraction of $sp^3$ bonding even after 2,000 glass lens forming applications.