• 제목/요약/키워드: High Temperature Hardness

검색결과 994건 처리시간 0.023초

전선용 실리콘 고무의 유전특성 (The Dielectric Properties of the Wire for Silicon Rubber)

  • 이성일;박승호
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2012년 추계학술대회
    • /
    • pp.355-368
    • /
    • 2012
  • This paper, the hardness of the silicone rubber wire for 50, 60 degrees, 70 degrees High Temperature Vulcanizing (HTV) method using specimens were fabricated. In this paper, in order to investigate the dielectric properties of silicone rubber for wire specimens, the temperature range of $30^{\circ}C{\sim}170^{\circ}C$, the frequency range from 100Hz~4.5MHz report surveyed about the frequency and temperature dependent properties.

  • PDF

Inconel 617의 고온열화에 따른 미세구조 및 고온 기계적 특성 (Effect of High Temperature Degradation on Microstructure and High Temperature Mechanical Properties of Inconel 617)

  • 조태선;이승호;김길수;김세훈;김영도
    • 한국재료학회지
    • /
    • 제17권5호
    • /
    • pp.268-272
    • /
    • 2007
  • Inconel 617 is a candidate tube material for high temperature gas-cooled reactors(HTGR). The microstructure and mechanical properties of Inconel 617 were studied after exposure at high temperature($1050^{\circ}C$). The dominant oxide layer was Cr-oxide. The internal oxide and Cr-depleted region were observed below the Cr-oxide layer. The depth of Cr-depleted zone and internal oxide increased with exposure time. The major phases of carbides are $M_{23}C_6\;and\;M_6C$. The composition of $M_{23}C_6\;and\;M_6C$ were determined to be Cr-rich and Mo-rich, respectively. $M_6C$ carbide is more stable than $M_{23}C_6$ at high temperature. From the results of high temperature compression test, there were no significant changes in hardness and yield strength upon increasing exposure time.

AIP 코팅법에서 로의 온도가 고속도강의 TiN 코팅에 미치는 영향에 관한 실험적 연구 (Experimental Study on Effect of Furnace Temperature on TiN-Coating of High Speed Steel by Arc Ion Plating)

  • 김해지;이상욱;전만수
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.97-103
    • /
    • 2006
  • In this paper, effect of temperature in TiN-coating by arc ion plating on surface characteristics of a TiN coated high speed steel is investigated by experiments. Hardness, surface roughness, TiN-coating thickness and adsorption force are measured in order to evaluate the effects. For evaluation of the experimental data, one-way ANOVA method is used. It is concluded that the furnace temperature in the range $400^[\circ}C\~500^{\circ}C$ in AIP processing has a little influence on the TiN coating of the SKH51 steels.

STS 431 마르텐사이트계 스테인리스강의 고온 가스 질화 열처리에 따른 상변화 (Phase Changes of the STS 431 Martensitic Stainless Steel after High Temperature Gas Nitriding Treatment)

  • 유대경;공정현;이해우;강창룡;김영희;성장현
    • 열처리공학회지
    • /
    • 제21권5호
    • /
    • pp.244-250
    • /
    • 2008
  • This study has investigated the surface phase change, hardness variation, surface precipitates, nitrogen content and corrosion resistance in STS 431 (17Cr-2Ni-0.2C-0.01Nb) martensitic stainless steel after high temperature gas nitriding (HTGN) treatment at the temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The HTGN-treated surface layer appeared $Cr_2N$ of rod type, carbo-nitride of round type and fine precipitates in the austenite matrix. On the other hand the interior region where the nitrogen was not permeated, exhibited martensite phase. The surface hardness showed 250~590 HV, depending on the HTGN treatment conditions, while the interior martensitic phase represented 520 HV. The permeation depth of nitrogen increased with increasing the HTGN-treated temperature. The nitrogen concentration of the surface layer appeared approximately ~0.17% at $1100^{\circ}C$. On comparing the corrosion resistance between solution-annealed and HTGN-treated steels, the corrosion resistance of HTGN-treated steel was superior to that of solution-annealed specimens.

중탄소 고망간강의 합금원소와 열처리 조건이 미세조직과 기계적 특성에 미치는 영향 (Effect of Alloying Elements and Heat Treatment on the Microstructures and Mechanical Properties of Medium Carbon High Manganese Steels)

  • 이동수;박현균
    • 열처리공학회지
    • /
    • 제23권6호
    • /
    • pp.338-343
    • /
    • 2010
  • Mechanical properties and microstructures of medium carbon high manganese steels were investigated in terms of alloying elements such as Mn, C contents, and heat treatment condition. Austenite volume fraction was increased with increasing Mn content, leading to hardness decrease in the range of Mn content of above 10% after quenching and tempering. Such results are also supported by microstructural analysis and X-ray diffraction in that the increase in mangaese content results in the increase in austenite fraction. Studies on tempering condition indicated that not only hardness and tensile strength but also charpy impact values were reduced as tempering temperature were raised in the range of $250^{\circ}C$ to $600^{\circ}C$. It was also observed that fracture mode was changed from dimple to intergranular fracture. Such results are thought to be due to very fine carbide precipitation or impurity segreagation at grain boundaries as tempering temperature goes up. Heat treatment of Fe-5Mn-2Si-1Al-0.4C can be optimized by austenitizing at $850^{\circ}C$, air cooling and tempering at $250^{\circ}C$, resulting in 1950 MPa in Tensile strength, 17% in elongation and 23.3 $J/cm^2$ in charpy impact energy with high work hardening characteristics.

Isothermal Heat Treatment of AISI 430 Ferritic Stainless Steel after High Temperature Gas Nitriding

  • Park, Sang-Jun;Kim, Jung-Min;Kang, Hee-Jae;Kang, Chang-Yong;Kim, Yung-Hee;Sung, Jang-Hyun
    • 열처리공학회지
    • /
    • 제25권3호
    • /
    • pp.115-120
    • /
    • 2012
  • It has been known that the ferritic stainless steel can be changed to martensitic stainless steel when nitrogen is added. However the high hardness of martensitic stainless steel prevents the plastic deformation. In this study, instead of martensite, the surface microstructure was changed into nitrogen pearlite to increase the plastic deformation easily by isothermal heat treatment after high temperature gas nitriding (HTGN) the AISI 430 ferritic stainless steel. The isothermal treatment was carried out at $780^{\circ}C$ for 4, 6, and 10 hrs, respectively, after HTGN treatment at $1100^{\circ}C$ for 10 hrs. The surface layer of isothermal-treated steel appeared nitrogen pearlite composed with fine chromium nitride and ferrite. Hence, the interior region that was not affected by nitrogen permeation exhibited ferrite phase. When quenching the isothermal treated steel at 1100oC, martensitic phase formed at the surface layer. The hardness of surface layer of isothermal-treated steel and quenched steel measured the value of 150~240 Hv and 630 Hv, respectively.

팽창질석 첨가에 따른 전선용 실리콘 고무의 난연 및 트래킹 특성에 관한 연구 (A Study on Flame Retardancy and Tracking Properties of Expanded Vermiculite Added Silicon Rubber for Wire)

  • 박승호;이성일
    • 한국전기전자재료학회논문지
    • /
    • 제32권3호
    • /
    • pp.213-218
    • /
    • 2019
  • In this study, a high-temperature vulcanizing (HTV) method was used to achieve a shore a hardness of 70. The basic base was composed of 60% silicon gum (GUM) which is a high-viscosity polymer, 30% fumed silica (FS), and 5% of plasticizer. The GUM and FS were mixed well with less than 1% silane to improve rubber strength. Expanded vermiculite was added as a filler at 10%, 15%, and 20%. The curing conditions were $170^{\circ}C$ for 10 min and a molding method was applied. We report herein, the results of inorganic analysis and flame-retardant and tracking tests on the expanded vermiculite. The flame retardance and tracking test outcomes for a shore a hardness of 70 were found to be optimal when the expanded vermiculite content was 10%.

초음파 주파수분석법에 의한 발전소 고온배관재료의 크리프손상 평가 (Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Frequency Analysis Spectrum Method)

  • 정민화;이상국
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.90-98
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions like high temperature and high pressure for an extended period time. Such material degradation lead to various component faliures causing serious accidents at the plant. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this study, both artificial creep degradation test using life prediction formula and frequency analysis by ultrasonic tests for their preparing creep degraded specimens have been carried out for the purpose of nondestructive evaluation for creep damage which can occur in high-temperature pipelline of fossil power plant. As a result of ultrasonic tests for crept specimens, we confirmed that the high frequency side spectra decrease and central frequency components shift to low frequency bans, and bandwiths decrease as increasing creep damage in backwall echoes.

  • PDF

이온질화된 공구강 표면의 산화 및 공식거동 (Corrosion and Oxidation Behaviors of ion-nitrided tool Steels)

  • 최한철;이호종;정용운
    • 한국표면공학회지
    • /
    • 제38권3호
    • /
    • pp.126-135
    • /
    • 2005
  • SKD 11 steel has been widely used for tools, metallic mold and die for press working because of its favorable mechanical properties such as high toughness and creep strength as well as excellent oxidation resistance. The ion nitrided tool steel containing Mo results in improvement of corrosion resistance, strength at high temperature and pitting resistance, especially in $Cl^-$ contained environment. But the Mo addition causes a disadvantage such as lower oxidation resistance at elevated temperature. In this study, several effects of ion-disadvantage on the oxidation characteristics for SKD 11 steel with various oxidation temperature were investigated. SKD 11 steels were manufactured by using vacuum furnace and solutionized for 1 hr at $1,050^{\circ}C$. Steel surface was ion nitrided at $500^{\circ}C$ for 1 hr and 5 hr by ion nitriding equipment. ion nitrided specimen were investigated by SEM, OM and hardness tester. Oxidation was carried out by using muffle furnace in air at $500^{\circ}C,\;700^{\circ}C\;and\;900^{\circ}C$ for 1hr, respectively. Oxidation behavior of the ion nitrided specimen was investigated by SEM, EDX and surface roughness tester. The conclusions of this study are as follows: It was found that plasma nitriding for 5 hr at $500^{\circ}C$, compared with ion nitriding for 1 hr at $500^{\circ}C$, had a thick nitrided layer and produced a layer with good wear, corrosion resistance and hardness as nitriding time increased. Nitrided SKD 11 alloy for 1hr showed that wear resistance and hardness decreased, whereas surface roughness increased, compared with nitrided SKD 11 alloy for 5 hr. The oxidation surface at $900^{\circ}C$ showed a good corrosion resistance.

3-TZP/SiC 복합체의 제조 및 기계적 성질 (Preparation and Mechanical Properties of 3Y-TZP/SiC Composites)

  • 이홍림;이형민
    • 한국세라믹학회지
    • /
    • 제29권11호
    • /
    • pp.877-887
    • /
    • 1992
  • Tetragonal zirconia powder with 3 mol% Y2O3 mas mixed with up to 30 vol% of ${\beta}$-SiC powders, and the mixtures were hot-pressed at 1500$^{\circ}C$ for 60 min under a pressure of 30 MPa in Ar atmosphere. Flexural strength and fracture toughness were measured at room-and high-temperature (1000$^{\circ}C$). Evolution of microstructure was also conducted to investigate the effects of SiC addition on the properties of 3Y-TZP ceramics. Average grain size of the composites was about 0.5 $\mu\textrm{m}$, and decreased with SiC addition. Both room- and high-temperature mechanical properties of the composites were improved with SiC content. Particularly, high-temperature strength and fracture toughness of 3Y-TZP/30v/o SiC composite were twice as high as those of 3Y-TZP. The hardness of the composites also increased with SiC content and reached maximum value at 3Y-TZP/30v/o SiC composite.

  • PDF