• Title/Summary/Keyword: High Temperature Generator

Search Result 289, Processing Time 0.03 seconds

Effect of the Tube Geometry and Arrangement on the Performance of a High Temperarture Generator (고온재생기 성능 변화에 미치는 전열관 형상 및 배열의 영향)

  • Lee, In-Song;Cho, Keum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.546-551
    • /
    • 2007
  • The present study numerically investigated the tube geometry and arrangement on the performance of a high temperature generator (HTG) of the double effect LiBr-water absorption system. FLUENT, as a commercial code, was used to estimate the thermal performance of the HTG. Key parameters were the spacing raito of circular and flattened tubes, the pitch ratio of the rib on the flattened tube, and total heat transfer area of the HTG. Temperature and velocity profiles around the tubes of the HTG were calculated to estimate the thermal performance of the HTG. When the spacing ratio of circular and flattened tube is 1.11 and 0.73, the exhaust gas temperature is $185^{\circ}C$ without rib. The exhaust gas temperature when applied the rib in flattened tubes was lower by $24^{\circ}C$ than that without the rib. Rib can reduce the HTG volume by 7%.

  • PDF

Temperature Variation of Exhaust Gas in Diesel Generator for Low Pressure SCR (저압 SCR을 위한 디젤발전기 배기가스 온도 변화)

  • Hong, Chul Hyun;Lee, Chang Min;Lee, Sang Duk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.355-362
    • /
    • 2021
  • To facilitate low-pressure selective catalyst reduction (L.P SCR), a high exhaust-gas temperature of a four-stroke diesel engine for a ship's generator is required. This study aimed at reducing the exhaust-gas temperature by adjusting the valve open-close timing and fuel injection timing to satisfy the operating conditions of L.P SCR and prevent accidents associated with the generator engine due to high temperature. To lower exhaust-gas temperature, the angle of the camshaft was adjusted and the shim of the fuel injection pump was added. As a result, the maximum explosion pressure increased and the average of the turbocharger outlet temperature dropped. Considering the heat loss from the turbocharger outlet to the SCR inlet, the operation condition for L.P SCR was satisfied with 290 ℃. The study demonstrates that safe operation of a diesel generator can be achieved by lowering the exhaust-gas temperature.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (가스발생기 재생냉각 챔버 구조해석)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.802-807
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was also conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which is operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion data were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreases the thermal load and strain of the cooling channel. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

  • PDF

Experimental Study on the Dependence of Variation in Performance of a High-Temperature Generator on Its Operating Conditions (운전조건 변화가 고온재생기의 성능에 미치는 영향에 관한 실험적 연구)

  • Bae, Kyungjin;Kwak, Myoungseok;Cho, Honghyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.389-397
    • /
    • 2014
  • An absorption chiller-heater using only a natural refrigerant hardly causes any environmental pollution. In an absorption chiller-heater, the performance of its high-temperature generator, which uses exhaust gases, is essential to achieving superior system performance. To investigate the performance of such a high-temperature generator, a laboratory-scale high-temperature generator working with exhaust gases was designed and tested. Changes in the performance of the high-temperature generator as a function of inlet conditions of the absorbing solution, such as air inlet temperature and mass flow, were investigated. It was observed that when the air mass flow rate ratio was increased from 80% to 120%, the heat capacity was increased by 30%, 33%, 34%, and 37%, respectively. Additionally, when the air inlet temperature was elevated from $170^{\circ}C$ to $210^{\circ}C$ for absorption solution concentrations of 56%, 55%, 545, and 53%, the heat capacity increased by 140%, 160%, 220%, and 224%, respectively.

Effect of Arrangement of Heat Transfer tube on the Thermal Performance for the High Temperature Generator (전열관 배열에 의한 고온재생기 열적 성능 변화)

  • Lee, In-Song;Cho, Keum-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.266-271
    • /
    • 2009
  • The present study numerically investigated the effect of the geometry of the flattened tube on the thermal performance of a high temperature generator (HTG) of a double effect LiBr-water absorption system. The heat transfer tubes of the HTG were arranged behind a metal fiber burner. The heat transfer of the tubes of HTG were consisted with a set of circular and flattened tubes in series. FLUENT, as a commercial code, was applied for estimating the thermal performance of the HTG. Key parameters were the tube arrangement in the HTG. Temperature and velocity profiles in the HTG were calculated to estimate the thermal performance of the HTG. The heat transfer rate of a HTG tube was increased, and the gas temperature around the flattened tube was decreased as the pitch ratio was increased. The heat transfer rate for the circular tube bundle with the pitch ratio of 2.48 were larger by 10% respectively than that of 2.10 and the heat transfer rate for the flattened tube bundle with the pitch ratio of 1.88 were larger by 36% respectively than that of 1.63.

  • PDF

Optimal Design of a MW Class SCSG for a Tidal Current Power Generation System

  • Go, Byeong-Soo;Sung, Hae-Jin;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2271-2276
    • /
    • 2015
  • A superconducting synchronous generator (SCSG) can be expected to decrease the size and weight compared to conventional tidal current generators. This paper proposes an optimal design of a 2 MW class SCSG for a tidal current power generation system. The proposed optimal design of the SCSG will reduce the length of the high-temperature superconducting wire as well as the weight and volume of the SCSG. The 3D finite element method is used to analyze the magnetic field distribution. The optimized 2 MW SCSG is compared with a 2 MW conventional generator. As the optimized SCSG is more compact and lighter than a conventional generator, it will be efficiently applied to practical tidal power systems.

FEASIBILITY OF AN INTEGRATED STEAM GENERATOR SYSTEM IN A SODIUM-COOLED FAST REACTOR SUBJECTED TO ELEVATED TEMPERATURE SERVICES

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.41 no.8
    • /
    • pp.1115-1126
    • /
    • 2009
  • As one of the ways to enhance the economical features in sodium-cooled fast reactor development, the concept of an integrated steam generator and pump system (ISGPS) is proposed from a structural point of view. And the related intermediate heat transfer system (IHTS) piping layout compatible with the ISGPS is described in detail. To assure the creep design lifetime of 60 years, the structural integrity is investigated through high temperature structural evaluation procedures by the SIE ASME-NH computer code, which implements the ASME-NH design rules. From the results of this study, it is found that the proposed ISGPS concept is feasible and applicable to a commercial SFR design.

Comparison of superconducting generator with 2G HTS and MgB2 wires

  • Park, S.I.;Kim, J.H.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This paper compares the features of second generation (2G) High Temperature Superconducting (HTS) field coil with those of magnesium diboride ($MgB_2$) field coil for a 10 MW class superconducting generator. Both coils can function effectively in their respective magnetic flux density range: 10-12 T for 2G HTS field coil, 2 T for $MgB_2$ superconducting field coil. Even though some leading researchers have been developing 10 MW class superconducting generator with 2G HTS field coil, other research groups have begun to focus on $MgB_2$ wire, which is more economical and suitable for mass production. However 2G HTS wire is still appealing in functions such as in-field property and critical temperature, it shows higher in-field property and critical temperature than $MgB_2$ wire.

Generation Efficiency and Thermal Performance of a Thermoelectric Generator with a High Power Electronic Component (고전력 전자소자에서 열전생성기의 생성효율과 열적성능)

  • Kim, Kyoung-Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.51-56
    • /
    • 2012
  • This paper reports the generation efficiency and the thermal performance of a thermoelectric generator (TEG) harvesting energy from the waste heat of high power electronic components. A thermoelectric (TE) model containing thermal boundary resistances is used to predict generation efficiency and junction temperature of a high power electronic component. The predicted results are verified with measured values, and the discrepancy between prediction and measurement is seen to be moderate. The verified TE model predicts generation efficiencies, junction temperatures of the component, and temperature differences across a TEG at various source heat flows associated with various electrical load resistances. This study explores effects of the load resistance on the generation efficiency, the temperature difference across a TEG, and the junction temperature.