• 제목/요약/키워드: High Temperature Fuel Injection

검색결과 202건 처리시간 0.02초

직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구 (An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature)

  • 이성욱;박기영;김종민;박봉규
    • 한국수소및신에너지학회논문집
    • /
    • 제25권6호
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

고온 항공유의 오리피스 인젝터 분사특성 수치해석 (Numerical Simulation of Orifice Injection Characteristics of High Temperature Aviation Fuel)

  • 황성록;이형주
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.89-96
    • /
    • 2023
  • This study presents a numerical simulation investigating hydrodynamic characteristics of high-temperature hydrocarbon aviation fuel injected through a plain orifice injector. The analysis encompassed the temperature range up to the critical point, and the obtained results were compared with prior experimental observations. The analysis unveiled that the injector's exit pressure remains equivalent to the ambient pressure when the fuel injection temperature is below the boiling point. However, when the fuel temperature surpasses the boiling point, the exit pressure of the injector transitions to the saturated vapor pressure corresponding to the fuel injection temperature. Consequently, the exit pressure of the injector increases in tandem with the rapid increase of the saturation vapor pressure due to escalating fuel temperatures. This rise in the exit pressure necessitates a proportional increase in fuel injection pressure to ensure a fixed fuel mass flow rate. Furthermore, the investigation revealed that the discharge coefficient obtained by applying the exit pressure instead of the ambient pressure did exhibit no decrease, but rather was maintained at a nearly constant value, comparable to its level below the boiling point.

고온.고압용기 내에서 핀틀노즐의 분무특성에 관한 실험적 연구 (An Experimental Study on Che Spray Characteristic of Pintle Type Nozzle in a High Temperature and High Pressure Chamber)

  • 송규근;정재연;정병국;안병규;오은탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권1호
    • /
    • pp.57-64
    • /
    • 2003
  • The characteristics of fuel spray have an important effect on engine performance such as power, specific fuel consumption and emission because fuel spray controls the mixing and combustion process in an engine. Therefore, if the characteristics of fuel spray can be measured, they can be effectively used for improving engine performance. The major factors controlling fuel spray are injection pressure, ambient pressure and engine speed. In this study, the experiment is performed in a high temperature and high pressure chamber. In experiments, spray tip penetration, spray angle and spray tip velocity are measured at various injection pressure (10 and 14 MPa), ambient pressure(3,4 and 5 MPa), fuel pump speed(500, 700 and 900 rpm). Experimental results are useful for deriving an experimental spray equation and design an optimal engine. The results showed that injection pressure, ambient pressure and fuel pump speed are important factors influencing on the characteristics of spray. 1) Injection pressure influences on the characteristics of spray. That is, as injection pressure is increased, spray angle is decreased but spray penetration and spray tip velocity is increased. 2) Spray angle and spray penetration are increased as fuel pump speed is increased.

단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성 (Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate)

  • 조상현;오광철;이춘범
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.

바이패스 방식 피에조 인젝터의 피에조 적층 및 인가전압에 따른 연료분사 특성 연구 (A Study on Injection Characteristics of Piezo Injector with Bypass by Various Piezo Stack and Applied Voltage)

  • 조인수;김우택;이진욱
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 2020
  • In the common rail fuel injection system, which is the core of diesel high efficiency and NOX reduction, injection strategies such as high pressure injection of fuel, accurate injection rate control, and multistage injection are important to increase fuel atomization. In this study, the bypass type piezo injector for the electronic control based common rail injection system applied to diesel fuel vehicle was studied. In particular, the injection rate and internal fuel flow characteristics of the high-pressure injector according to the piezo stacking number and applied voltage were analyzed by theoretical numerical method. When the applied voltage changes, it is determined that additional fuel flow through the bypass compensates for the reduced valve driving force due to the change in the driving voltage.

연료 분사 특성이 가솔린 엔진 HC 배출특성에 미치는 영향 (Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines)

  • 우영민;배충식;이용표
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.796-801
    • /
    • 2001
  • During cold operation period, fuel injection system directly contributes the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA. 6-hole injector was found to produce finer spray than single hole one. Using a purpose-built test rig, the wall wetting fuel was measured, which was mostly affected by wall temperature. Varying coolant temperature($20{\sim}80^{\circ}C$), HC emissions were measured in a production engine. With respect to the different types of injectors, HC emission was also measured. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect between different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

  • PDF

연료 분사 특성이 가솔린 엔진 HC 배출에 미치는 영향 (Effects of Port Fuel Injection Characteristics upon HC Emission in SI Engines)

  • 우영민;배충식;이동원
    • 한국자동차공학회논문집
    • /
    • 제11권2호
    • /
    • pp.8-15
    • /
    • 2003
  • During cold operation, fuel injection in the intake port directly contributes to the unburned hydrocarbon formation in spark ignition engines. The relationship between injection parameters and HC emission behavior was investigated through a series of experiments. Spray behavior of port fuel injectors was characterized through a quantitative evaluation of mass concentration of liquid fuel by a patternator and PDA(Phase-Doppler. Anemometer). A 6-hole injector was found to produce finer spray than single hole injector. Using a purpose-built wall, the wetted fuel was measured, which was mostly affected by wall temperature. HC emissions were measured in a production engine varying coolant temperature$(20~80^{\circ}C)$, also with respect to the different types of injectors. In the 6-hole injector application, the engine produced less HC emission in low coolant temperature region. Though it produces much more amount of wetting fuel, it has the advantages of finer atomization quality. In high coolant temperature region, there was little effect by different types of injectors. The control schemes to reduce HC emissions during cold start could be suggested from the findings that the amount of fuel supply and HC emission could be reduced by utilizing fine spray and high intake wall temperature.

전자유압식 분사계에 의한 초고압 디젤분무의 입경분포에 관한 연구 (A Study on the Droplet Size Distribution of Ultra High Pressure Diesel Spray on Electronic Hydraulic Fuel Injection System)

  • 장세호;안수길
    • 동력기계공학회지
    • /
    • 제2권1호
    • /
    • pp.25-30
    • /
    • 1998
  • In order to investigate the droplet size distribution and Sauter Mean Diameter in a ultra high pressure diesel spray, fuel was injected with ultra high pressure into the environments of high pressure and room temperature by an Electronic Hydraulic Fuel Injection System. Droplet size was measured with the immersion liquid sampling technique. The immersion liquid was used a mixture of water-methycellulose solution and ethanol. The Sauter Mean Diameter decreased with increasing injection pressure, with a decrease environmental pressure (back pressure) and nozzle diameter. Increasing the injection pressure makes the fuel density distribution of the spray more homogeneous. An empirical correlation was developed among injection pressure, air density, nozzle diameter and the Sauter Mean Diameter of spray droplets.

  • PDF

경유-벙커C유 혼합연료의 분무 특성에 관한 연구 (A Study on the Characteristics of the Mixed Light-BC Oil Sprays)

  • 윤면근;조성철;최영구;류정인
    • 한국분무공학회지
    • /
    • 제2권3호
    • /
    • pp.25-31
    • /
    • 1997
  • This experiment was undertaken to investigate the spray characteristics of the conventional injection system and the ultrasonic energy added injection system. Test fuels include light oil and mixed light-BC oil. The mixed light-BC oil was injected at the normal temperature$(20^{\circ}C)$ and the high temperature$(95{\pm}2^{\circ}C)$ and injection pressure was $120kg/cm^2$. Sauter mean diameter was measured under the variation of the spray distance. To measure the droplet size, we used the Malvern system 2600C. Droplet size distribution was analyzed from the result data of Malvern system. It is also found that the condition of the ultrasonic energy added injection and high temperature injection generates the smaller droplets than that of the conventional injection.

  • PDF

연료의 비등점이 고온상태 분사특성에 미치는 영향 (A Study on the Effect of Fuel Boiling Point on Injection Characteristics at High Fuel Temperature Conditions)

  • 이형주;최호진;김일두;정병훈;한정식
    • 한국추진공학회지
    • /
    • 제18권2호
    • /
    • pp.42-51
    • /
    • 2014
  • 기존 항공유보다 비등점을 높인 고비등점 연료에 대하여 다양한 분사 압력 조건에서 비등점 이상의 온도까지 연료를 가열하는 경우의 분사특성을 실험적으로 연구하였다. 연료 온도 상승에 따른 인젝터의 특성은 유량계수(${\alpha}$)와 캐비테이션 수($K_c$)를 파라미터로 나타내었는데, 고온에서의 각 연료별 ${\alpha}$ 특성을 $K_c$에 대해 나타내면 그 경향이 모두 유사한 것으로 확인되었다. 한편, 고비점 연료들은 기존 연료에 비하여 비등의 효과가 나타나기 시작하는 온도가 더 높아졌을 뿐만 아니라, 그 이상의 온도에서도 분사 특성에 미치는 인젝터 내부의 비등 영향을 더 적게 받았다.