• 제목/요약/키워드: High Temperature Fuel Cell

검색결과 431건 처리시간 0.025초

무전해 코발트 코팅된 금속계 SOFC분리판의 제조 및 특성 평가 (Synthesis and Characterization of the Co-electrolessly Deposited Metallic Interconnect for Solid Oxide Fuel Cell)

  • 한원규;주정운;황길호;서현석;신정철;전재호;강성군
    • 한국재료학회지
    • /
    • 제20권7호
    • /
    • pp.356-363
    • /
    • 2010
  • For this paper, we investigated the area specific resistance (ASR) of commercially available ferritic stainless steels with different chemical compositions for use as solid oxide fuel cells (SOFC) interconnect. After 430h of oxidation, the STS446M alloy demonstrated excellent oxidation resistance and low ASR, of approximately 40 $m{\Omega}cm^2$, of the thermally grown oxide scale, compared to those of other stainless steels. The reason for the low ASR is that the contact resistance between the Pt paste and the oxide scale is reduced due to the plate-like shape of the $Cr_2O_3$(s). However, the acceptable ASR level is considered to be below 100 $m{\Omega}cm^2$ after 40,000 h of use. To further improve the electrical conductivity of the thermally grown oxide on stainless steels, the Co layer was deposited on the stainless steel by means of an electroless deposition method; it was then thermally oxidized to obtain the $Co_3O_4$ layer, which is a highly conductive layer. With the increase of the Co coating thickness, the ASR value decreased. For Co deposited STS444 with 2 ${\mu}m$hickness, the measured ASR at $800^{\circ}$ after 300 h oxidation is around 10 $m{\Omega}cm^2$, which is lower than that of the STS446M, which alloy has a lower ASR value than that of the non-coated STS. The reason for this improved high temperature conductivity seems to be that the Mn is efficiently diffused into the coating layer, which diffusion formed the highly conductive (Mn,Co)$_3O_4$ spinel phases and the thickness of the $Cr_2O_3$(S), which is the rate controlling layer of the electrical conductivity in the SOFC environment and is very thin

가교제의 종류가 천연고무 발포체의 팽윤거동에 미치는 효과 (Influence of the Type of Curing Agent on Swelling Behavior of Natural Rubber Foam)

  • 이환광;정태경;김성찬;김현기;최경만;김영민;한동훈
    • 한국산학기술학회논문지
    • /
    • 제9권6호
    • /
    • pp.1775-1781
    • /
    • 2008
  • 가교제의 종류가 헬리콥터 연료탱크의 자기밀폐층 소재로 적용시키기 위한 천연고무 스폰지의 팽윤에 미치는 효과를 조사하였다. 과산화물과 황을 섞은 가교방식과 과산화물에 의한 가교방식을 채택하였다. 천연고무 콤파운드를 Kneader와 Roll-Mill을 활용하여 제조하고, 고압조건의 프레스에서 부분 가교시킨 후 대기압의 금형에서 발포와 완전가교를 실시하였다. 얻어진 스폰지의 겉보기밀도를 측정하고 스폰지의 셀구조를 주사전자현미경을 통하여 관찰하였다. 톨루엔, 이소옥탄과 항공유를 사용하여 실온에서 팽윤실험을 실시하였다. 용매에 2분 동안 침적 후 얻어지는 부피팽윤비 값은 과산화물 가교에 의한 천연고무 스폰지가 비슷한 양의 황과 과산화물의 혼합가교에 의한 경우보다 높았다. 스폰지의 겉보기밀도와 셀구조는 과산화물 함량에 매우 민감하였으며 이는 또한 천연고무 스폰지의 팽윤거동에 영향을 미쳤다. 천연고무 스폰지가 연료와 접촉하여 신속한 팽윤이 얻어지기 위하여 금형에서 동시에 발생하는 두 가지 반응인 발포제의 분해반응과 천연고무의 가교반응을 적절히 조절하는 것이 중요하다.

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

Preparation and Characterization of Poly(styrenesulfonic acid)-grafted Fluoropolymer Membrane for Direct Methanol Fuel Cell

  • Choi, Jae-Hak;Kang, Phil-Hyun;Lim, Youn-Mook;Sohn, Joon-Yong;Shin, Jun-Hwa;Jung, Chan-Hee;Jeun, Joon-Pyo;Nho, Young-Chang
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.52-56
    • /
    • 2007
  • A proton exchange membrane was prepared by ${\gamma}-irradiation-induced$ grafting of styrene into poly(tetrafluoro-ethylene-co-perfluoropropyl vinyl ether) (PFA) and subsequent sulfonation reaction. The degree of grafting (DOG) increased with an increase in the absorbed dose. The prepared membranes showed high ion exchange capacity reaching 3.0 meq/g, which exceeded the performance of commercially available perfluorosulfonic acid membranes such as Nafion. The proton conductivity of PFA-g-PSSA membrane increased with the DOG and reached 0.17 S/cm for the highest sample at room temperature. The DMFC performance of the prepared membranes with 50% DOG was comparable to that of Nafion membrane.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제4권1호
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber

  • Ogura K.;Chandhaket S;Nagai S;Ahmed T;Nakaoka M
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(1)
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge-resonant snubber which is used for power conditioner such as solar photovoltaic generation and fuel cell generation. The experimental results of boost chopper fed ZVS-PWM DC-DC converter are evaluated. In audition to its switching voltage and current waveforms, and the switching v-i trajectory of the power devices are discussed and compared with the conventional hard switching DC-DC converter treated here. The temperature performance of IGBT module,, efficiency, and EMI noise characteristics of this ZVS-PWM DC-DC converter using IGBTs are measured and evaluated from an experimental point of view.

  • PDF

알코올계 촉매 슬러리를 활용한 바 코팅으로 제조된 PTFE 전극의 형성 및 특성 조사 (Characterization of PTFE Electrode Made by Bar-Coating Method Using Alcohol-Based Catalyst Slurry)

  • 정현승;김도형;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제31권3호
    • /
    • pp.276-283
    • /
    • 2020
  • Alcohol-based solvents including ethanol (EtOH) and tert-butyl alcohol (TBA) are investigated instead of isopropanol (IPA), which is a common solvent for polytetrafluoroethylene (PTFE), as an alternative solvent for preparing the catalyst slurry with PTFE binder. As a result, the performance at 0.2 A/㎠ from the single cells from using catalyst slurries based on EtOH and TBA showed very similar value to that from the slurry using IPA, which implies the EtOH and TBA can be used as a solvent for the catalyst slurry. It is also confirmed by the very close values of the total resistance of the membrane electrode assemblies from the slurries using different solvents. In the energy dispersive spectrometry (EDS) image, the shape of crack and dispersion of PTFE are changed according to the vapor pressure of the solvent.

혼합 다채널 사형 유로의 혼합영역이 PEMFC 성능에 미치는 영향 (The Effect of Mixing Region in Mixed Multiple Serpentine Flow-field to PEMFC Performance)

  • 이지홍;이명용;김헌주;이상석;이도형
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.265-273
    • /
    • 2009
  • Proton Exchange Membrane Fuel Cell (PEMFC) has low operating temperature and high efficiency. And PEMFC consists of many components as bipolar plate, gas diffusion layer, membrane etc.. Flow-field in bipolar plate roles path for transporting reactants to membrane. Therefore a design of flow-field has an effect on PEMFC's performance. In this study, Computational Fluid Dynamics (CFD) simulations were performed for comparing mixed multiple serpentine (MMS) flow-field and multiple serpentine (MS) flow-field. And we studied an effect according to change mixing region design in MMS flow-field. Finally the applicability of results is verified by performing CFD simulation about fixed MMS flow-field which is combined good designs.

침탄된 316L 스테인리스 강의 접촉저항 및 내식 특성 (The Contact Resistance and Corrosion Properties of Carburized 316L Stainless Steel)

  • 홍원혁;고석진;장동수;이정중
    • 한국표면공학회지
    • /
    • 제46권5호
    • /
    • pp.192-196
    • /
    • 2013
  • Stainless steels (AISI 316L) are carburized by Inductively coupled plasma using $CH_4$ and Ar gas. The ${\gamma}_c$ phase(S-phase) is formed on the surface of stainless steel after carburizing process. The XRD peak of carburized samples is shifted to lower diffracting angle due to lattice expansion. Overall, the thickness of ${\gamma}_c$ phase showed a linear dependence with respect to increasing temperature due to the faster rate of diffusion of carbon. However, at temperatures above 500, the thickness data deviated from the linear trend. It is expected that the deviation was caused from atomic diffusion as well as other reactions that occurred at high temperatures. The interfacial contact resistance (ICR) and corrosion resistance are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment. The ICR value of the carburized samples decreased from 130 $m{\Omega}cm^2$ (AISI 316L) to about 20 $m{\Omega}cm^2$. The sample carburized at 200 showed the best corrosion current density (6 ${\mu}Acm^{-2}$).

Structural and Thermal Analysis and Membrane Characteristics of Phosphoric Acid-doped Polybenzimidazole/Strontium Titanate Composite Membranes for HT-PEMFC Applications

  • Selvakumar, Kanakaraj;Kim, Ae Rhan;Prabhu, Manimuthu Ramesh;Yoo, Dong Jin
    • Composites Research
    • /
    • 제34권6호
    • /
    • pp.373-379
    • /
    • 2021
  • A series of novel PBI/SrTiO3 nanocomposite membranes composed of polybenzimidazole (PBI) and strontium titanate (SrTiO3) with a perovskite structure were fabricated with various concentrations of SrTiO3 through a solution casting method. Various characterization techniques such as proton nuclear magnetic resonance, thermogravimetric analysis, atomic force microscopy (AFM) and AC impedance spectroscopy were used to investigate the chemical structure, thermal, phosphate absorption and morphological properties, and proton conductivity of the fabricated nanocomposite membranes. The optimized PBI/SrTiO3-8 polymer nanocomposite membrane containing 8wt% of SrTiO3 showed a higher proton conductivity of 7.95 × 10-2 S/cm at 160℃ compared to other nanocomposite membranes. The PBI/SrTiO3-8 composite membrane also showed higher thermal stability compared to pristine PBI. In addition, the roughness change of the polymer composite membrane was also investigated by AFM. Based on these results, nanocomposite membranes based on perovskite structures are expected to be considered as potential candidates for high-temperature PEM fuel cell applications.