• Title/Summary/Keyword: High Temperature Fluid

Search Result 922, Processing Time 0.031 seconds

Increase of Epigallocatechin in Green Tea Extract by Lactic Acid Bacteria Fermentation (젖산균 발효를 통한 녹차 추출물의 Epigallocatechin 함량의 증대)

  • Choi, Chan-Yeong;Park, Eun-Hee;Ju, Yoong-Woon;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • Hydrolytic enzyme activities, including those of ${\beta}$-glucosidase, ${\beta}$-glucuronidase, ${\beta}$-xylosidase, ${\beta}$-galactosidase, ${\beta}$-arabinofuranosidase, ${\beta}$-arabinosidase, and ${\beta}$-arabinopyranosidase, which are useful for bioconversion, were explored in lactic acid bacteria isolated from Korean traditional fermented foods. Nine bacterial strains were selected for the fermentation of green tea extract prepared by supercritical fluid extraction. Changes in the concentrations of catechin, epicatechin, epicatechin gallate, epigallocatechin, and epigallocatechin-3-gallate in green tea extract were investigated after fermentation by the selected lactic acid bacteria strains. The strain Leuconostoc mesenteroides MBE1424, which showed the highest ${\beta}$-glucuronidase enzyme activity among the tested bacterial strains, increased the epigallocatechin content of the green tea extract by 60%. In addition, L. mesenteroides MBE1424 was more resistant than the control strain at high temperature and showed a maximum specific growth rate at $40^{\circ}C$. L. mesenteroides MBE1424 was presumed to have an enzyme system containing ${\beta}$-glucuronidase with utility in the bioconversion of green tea extract.

Study on Sealing Characteristics of Solenoid Valve for Fuel Cells (연료전지용 솔레노이드 밸브의 실링 특성에 관한 연구)

  • Yun, So-Nam;Jeong, Hwang-Hun;Kim, Young-Bok;Kim, Dong-Gun;Heo, Duk-Yeal
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1193-1198
    • /
    • 2011
  • The solenoid valve used in fuel cell system need to have good sealing performance because the work fluid can explode in the system. Moreover, the temperature of the work fluid is extremely high in order to maintain the properties of the rubber ring that seals the solenoid valve. This study deals with the rubber ring which is made from a fluoro-elastomer. The life cycle of the rubber ring was estimated by the relational expression of Arrhenius, and the solenoid valve was tested to confirm the sealing characteristics.

Analysis of the Flow Field of Carrier-Based Aircraft Exhaust Jets Impact on the Flight Deck

  • Yue, Kuizhi;Sun, Yicheng;Liu, Hu;Guo, Weigang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In order to provide some references for suitability of carrier-based aircrafts, this paper studies the flow field of exhaust jets and its impact on the flight deck. The geometrical models of aircraft carrier and carrier-based aircrafts are firstly built, on which unstructured tetrahedral meshes are generated for numerical analysis. Then, this paper simulates the flow field of exhaust jets to evaluate its impact on the Jet Blast Deflector (JBD) and the flight deck, when four carrier-based aircrafts are ready to start off in the bow. The standard k-${\varepsilon}$ equations, three-dimension N-S equations and the Computational Fluid Dynamics (CFD) theory are used in the analysis process. To solve the equations, the thermal coupling of the wind and the jet flow are also considered. The velocity and temperature distributions are provided with the simulation of the CFD software, FLUENT. The results indicate that: (1) this analytical method can be used to simulate aerodynamic problems with complex geometrical models, and the results are of high reliability; (2) the safety working area, the installation scheme of the JBD and the arrangement of the take-off position can be optimized through analysis.

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process (진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구)

  • Park, Hyungkwon;Kwon, Juhyuk;Lee, Illjoo;Lee, Changhee
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

Intercooler for Multi-stage Turbocharger Design and Analysis of the Hydrogen Reciprocating Engine for HALE UAV (고고도 장기체공 무인기용 수소 왕복 엔진의 다단터보차저용 인터쿨러 설계 및 해석)

  • Lee, Yang Ji;Rhee, Dong Ho;Kang, Young Seok;Lim, Byoeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.65-73
    • /
    • 2017
  • Intercoolers for multi-stage turbocharger of the hydrogen reciprocating engine for HALE UAV are installed for reducing the charged air inlet temperature of the engine. The intercooler is air to air, cross flow, plate-fin type and the fin configuration is offset-strip fin which is referenced from the heat exchanger of the ERAST. Most of HALE UAV's cruising altitude is 60,000 ft and the density of air for this altitude is very low compared to sea level. Therefore the required heat transfer area for the HALE UAV is about three-times bigger than the sea level. Consequently, it is essential to design to meet the required efficiency of intercooler in the range of not excessively growing the weight of the heat exchanger. The quasi-one dimensional heat transfer design/analysis for satisfying the requirement of the engine are written in this paper. The numerical analyses for estimating the coolant flow rate of the engine bay and pressure loss in the header and core are also summarized.

Effect of Ionic Polymers on Sodium Intake Reduction (이온성 고분자를 이용한 나트륨 섭취 감소 효과)

  • Park, Sehyun;Lee, YoungJoo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • Sodium chloride is present in our body fluids, and the blood contains approximately 0.9 wt% salt, which plays an important role in maintaining the osmotic pressure. However, the amount of salt intake has consistently increased, and an excessive intake can be the cause of high blood pressure, etc. In this study, it was investigated in vivo and in vitro whether biocompatible ionic polymers with K or Ca ions can be replaced by Na ions through an ion exchange process to be excreted. Among the polymers, Ca-polystyrene sulfonate, K-polystyrene sulfonate, Ca-carrageenan, and Ca-tamarind had an excellent Na exchange ability in the body temperature, simulated gastric fluid and also simulated intestinal fluid. The mechanism of Na removal by absorption and excretion without changing food taste in the mouth through the insolubility properties of these polymers is expected to be a solution for the current problems related with excess sodium intake.

Distribution of Ions and Molecules Density in N2/NH3/SiH4 Inductively Coupled Plasma with Pressure and Gas Mixture Ratio) (N2/NH3/SiH4 유도 결합형 플라즈마의 압력과 혼합가스 비율에 따른 이온 및 중성기체 밀도 분포)

  • Seo, Kwon-Sang;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.370-378
    • /
    • 2017
  • A fluid model of 2D axis-symmetry based on inductively coupled plasma (ICP) reactor using $N_2/NH_3/SiH_4$ gas mixture has been developed for hydrogenated silicon nitride ($SiN_x:H$) deposition. The model was comprised of 62 species (electron, neutral, ions, and excitation species), 218 chemical reactions, and 45 surface reactions. The pressure (10~40 mTorr) and gas mixture ratio ($N_2$ 80~96 %, $NH_3$ 2~10 %, $SiH_4$ 2~10 %) were considered simulation variables and the input power fixed at 1000 W. Different distributions of electron, ions, and molecules density were observed with pressure. Although ionization rate of $SiH_2{^+}$ is higher than $SiH_3{^+}$ by electron direct reaction with $SiH_4$, the number density of $SiH_3{^+}$ is higher than $SiH_2{^+}$ in over 30 mTorr. Also, number density of $NH^+$ and $NH_4{^+}$ dramatically increased by pressure increase because these species are dominantly generated by gas phase reactions. The change of gas mixture ratio not affected electron density and temperature. With $NH_3$ and $SiH_4$ gases ratio increased, $SiH_x$ and $NH_x$ (except $NH^+$ and $NH_4{^+}$) ions and molecules are linearly increased. Number density of amino-silane molecules ($SiH_x(NH_2)_y$) were detected higher in conditions of high $SiH_x$ and $NH_x$ molecules density.

Experimental Study on Heat Transfer Characteristics of Binary Working Fluid for Clean Large Cauldron Using Liquid-Vapor Phase Change Heat (기-액 상변화 열전달을 이용한 대형 조리용기 개발을 위한 2 성분 작동유체의 열전달 특성실험)

  • Jung, Tae Sung;Kang, Hwan Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.899-905
    • /
    • 2014
  • This paper describes preliminary research conducted for developing a high-efficiency clean large cauldron using the liquid-vapor phase change heat transfer. To improve the isothermal environment of the cauldron, naphthalene and FC-40 were selected as the working fluids to operate well in the temperature range of $100-200^{\circ}C$ and used in experimental investigations of the heat transfer characteristics. A two-phase closed thermosyphon was designed and built to demonstrate the functionality of the working fluids. Startup, boiling, and condensation tests were performed, and the test results were used to examine the possibility of complementary effects of the startup and heat transfer characteristics of the two-phase closed thermosyphon using a mixture of naphthalene and FC-40.

Channel Structure and Header Design of Printed Circuit Heat Exchanger by Applying Internal Fluid Pressure (유체 내압을 고려한 인쇄기판형 열교환기의 채널구조 및 헤더 설계)

  • Kim, Jungchul;Shin, Jeong Heon;Kim, Dong Ho;Choi, Jun Seok;Yoon, Seok Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.767-773
    • /
    • 2017
  • Printed Circuit Heat Exchanger (PCHE) has an advantage for exchanging thermal energy between high-pressure and high-temperature fluids because its core is made by diffusion bonding method of accumulated metal thin-plates which are engraved of flow channel. Moreover, because it is possible that the flow channel can be micro-size hydraulic diameter, the heat transfer area per unit volume can be made larger than traditional heat exchanger. Therefore, PCHE can have higher efficiency of heat transfer. The smaller channel size can make the larger heat transfer area per unit volume. But if high pressure fluid flows inside the channel, the channel wall can be deformed, the structure and shape of flow channel and header have to be designed appropriately. In this study, the design methodology of PCHE channel in high pressure environment based on pressure vessel codes was investigated. And this methodology was validated by computational analysis.

Fabrication of the poly (methyl methacrylate)/clay (modified with fluorinated surfactant) nanocomposites using supercritical fluid process (초임계 공정을 이용한 poly(methyl methacrylate)/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.231-237
    • /
    • 2014
  • The supercritical fluids (SCFs) have been widely used for material synthesis and processing due to their remarkable properties including low viscosity, high diffusivity and low surface tension. Carbon dioxide is one of the suitable solvents in SCFs processes in terms of its advantages such as easy processibility (with low critical temperature and pressure), inexpensive, nonflammable, nontoxic, and readily available. However, it has generally low solubility for high molecular weight polymers with the exception of fluoropolymers and siloxane polymers. Therefore, hydrocarbon solvents and hydrochlorofluorocarbons have been used for various SCFs process by its high solubility for high molecular weight polymers. In this report, a PMMA/clay nanocomposites were fabricated by using supercritical fluid process. The $Na^+$-MMT(montmorillonites)was modified by a fluorinated surfactant which is able to enhance compatibility with the chlorodifluoromethane(HCFC-22) and thus, improve dispersability of the clay in the polymer matrix. The PMMA/fluorinated surfactant modified clay nanocomposite shows enhanced mechanical and thermal properties which characterized by X-raydiffraction(XRD), Thermo gravimetric analysis(TGA), Dynamic mechanical analysis (DMA) and Transmission electron microscopy (TEM).