• Title/Summary/Keyword: High Temperature Fluid

Search Result 920, Processing Time 0.027 seconds

Granulites of northern korea (한반도 북부의 백립암)

  • Glebovitsky, V.A.;Sedova, I.S.;Bushmin, S.A.;Vapnik, Ye.A.;Buiko, A.K.
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.196-219
    • /
    • 1994
  • Granulite complexes in northern (the Nangnim block), eastern (ther Kimchaek zone of the Macheonryong belt) and southern (separate windows among upper Proterozoic structure such as the Wonsan, Nampo and Haeju granulites) parts of the Northern Korea are studied. Multistage deformations, metamorphic and migmatitic events, and granite formations are recognized in these granulite complexes. Mineral thermobarometry and fluid inclusion investigationss are used to establish the P-T evolutionary trends during prograde and retrograde metamorphic events. The peak metamorphism of granulites is characterized by temperature near $800^{\circ}C$ and pressure near 5.5-6 kb. Retrograde evolution includes cooling at constant pressure or with variable pressure ranging up to 7-8 kb. This P-T change corresponds to the transition from high to moderate or low geothermal gradient. The subsequent cooling is ac-companied by significant decompression to 3-4 kb.

  • PDF

Performance Simulation of a R744-R717 Cascade Refrigeration System According to Operating Conditions (R744-R717 캐스케이드 냉동시스템에서 운전조건 변화에 따른 성능 해석)

  • Ryu, Jiho;Cho, Honghyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.497-505
    • /
    • 2015
  • The evaporating temperature range required for the low temperature freezing system is from $-50^{\circ}C$ to $-30^{\circ}C$. Since it is difficult to keep the required capacity in a cabinet, it is advantageous to design the system using a cascade refrigeration system. Use of carbon dioxide and ammonia would be advantageous since ammonia is an environment-friendly working fluid and has a high capacity for performance improvement. To investigate the performance characteristics of the R744-R717 cascade refrigeration system, a theoretical model was developed and performance was analyzed according to cascade heat exchanger operating temperature. The optimal cascade R744 condensing temperature was $-5^{\circ}C$, and maximum COP was 1.13 when the temperature difference of the cascade heat exchanger was $5^{\circ}C$. In addition, the total system COP increased by 1.17 when the cascade temperature gap was $3^{\circ}C$ at the middle temperature of $-7.5^{\circ}C$.

Thermochemcial Characteristics of Rocket Nozzle Flow and Methods of Analysis (로켓 노즐 유동의 열/화학적 특징 및 해석 기법)

  • Choi Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.144-148
    • /
    • 2001
  • Characteristics of high temperature rocket nozzle flow is discussed along with the aspects of computational analysis. Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were discussed those were coupled with the methods of computational fluid dynamics. A chemical equilibrium code developed for the analysis of general hydrocarbon fuel was coupled with three approaches of nozzle flow analysis, and a test was made for a bell nozzle at typical operation condition. As a results, the characteristics of the approaches were discussed in aspects of rocket performance, thermal analysis and computational efficiency.

  • PDF

Analysis of a Refrigeration Cycle Driven by Refrigerant Steam Turbine (냉매증기터빈에 의해 구동되는 냉동사이클의 해석)

  • 정진희
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.801-810
    • /
    • 2002
  • We have analyzed a combined cycle employing refrigerant Rankine cycle and simple refrigeration cycle with one working fluid. Although this cycle shows promising aspects such as simplicity, it does not have a good efficiency to compete with the other existing technologies because of high temperature at the exit of the turbine. However, by introducing a recuperator, it is found that the cycle efficiency can be improved up to the level much higher than other technology's efficiency.

Development of 100W thermoelectric power generation module (100W급 열전발전 모듈 기술 개발)

  • Moon, Jihong;Hwang, Jungho;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.321-322
    • /
    • 2015
  • Thermoelectric power generation has emerged as a promising alternative technology because it offers a potential application in the direct conversion of waste heat into electric energy. The performance of thermoelectric power generator depends on thermoelectric materials and thermoelectric power module designs. The main objective of this study is to design a 100W thermoelectric generation (TEG) module and to get optimal operating conditions of the module. The design and performance of the TEG module will be presented.

  • PDF

A Review of the Possible Causes of Negative Source Impedance in Fluid Machines (유체기계에 있어서 부의 음원 임피던스의 원인에 관한 고찰)

  • ;Keith S. Peat
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • Most fluid machines can be considered as periodic noise sources when operated under constant conditions, which allows for a frequency domain representation of the source and the associated acoustic field In the duct. In such a representation, the source is characterized by frequency-dependent values of both strength and impedance. Although knowledge of these values can be gained by either experimentation or by modeling, one-port acoustic characteristics of an in-duct source with high flow velocity, high temperature, and high sound level can be measured only by the multiload method using an overdetermined set of open pipes with different lengths as applied loads. However, the problem is that negative source resistances have been often measured. This paper reviews the possible causes of the problem, with reference to experimental and theoretical results, in an attempt to clarify the issue. A new interpretation is given for the violation of basic assumptions and the defect in the algorithm of multiload method. The major cause and mechanism of the problem is due to the violation of time invariance assumption of the source and the load impedance can seriously affect the final measured result of source impedance.

  • PDF

An Analytical and Experimental Study on the Thermal Shroud Effect to Minimize Thermal Deformation of a High L/D Ratio Cylinder (장축 실린더의 열변형 최소화를 위한 차열관 효과 해석 및 실험 연구)

  • Ahn, Sang-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • A barrel is a high length-to-diameter ratio cylinder that is influenced by environmental factors such as sunlight, precipitation, wind and clouds. Cross-barrel temperature differences caused by uneven heating or cooling lead to thermal deformation that degrades accuracy. Therefore, a barrel is covered by thermal shrouds to minimize the type of thermal deformation, "fall-of-shot". In this paper, an analytical and experimental study is presented to design the thermal shrouds for a gun barrel and to evaluate the thermal shroud effect. First, an analytical study on the thermal shroud effect to minimize thermal deformation of a gun barrel by sunlight and wind is performed. The coupled analysis of thermal fluid dynamics of the air flow between a barrel and thermal shrouds and thermal stresses of a barrel Is performed to clarify both the thermal shroud effect and the drift in gun muzzle orientation by thermal deformation. Second, experiments are carried out to test and evaluate the thermal shroud effect on the performance of a gun barrel. The drift in gun muzzle orientation against the solar radiation is confirmed by the experiments, and the results well agree with the analytical estimation. Third, three principal design factors that are presumed to have an effect on the performance of the thermal shrouds are also analyzed; sorts of shroud materials, wall-thickness of thermal shrouds, and distance of the gap between a barrel and thermal shrouds.

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

The Effect of Aerated Oil Considering Live Oil Surface Tension on High-Speed Journal Bearing

  • Chun, Sang-Myung
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • The influence of aerated oil on high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. The live oil surface tension is considered as functions of temperature, API gravity and air volume ratio. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction farce may be changed so visibly for the high speed bearing operation.

  • PDF

Modeling the Growth of Bulk Single Crystals via High Performance Computing

  • Andrew Yeckel;Kwon, Yong-Il;Jeffrey J. Derby
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.115-120
    • /
    • 1997
  • We have developed new algorithms for solution of the three-dimensional, time-dependent Navier-Stokes equations that utilize massively parallel supercomputing implemented on the Connection Machine 5. Here, we apply these techniques to analyze he fluid flows that occur during the growth of the tow nonlinear optical crystals-potassium dihydrogen phosphate (KDP), which is producted in a novel rapid growth system under development by the Lawrence Livermore National Laboratory Laser Division, and Potassium titanyl phosphate(KTP), which is grown from a high-temperature aqueous solution.

  • PDF