• Title/Summary/Keyword: High Temperature Fluid

Search Result 920, Processing Time 0.03 seconds

Numerical study of the flow and heat transfer characteristics in a scale model of the vessel cooling system for the HTTR

  • Tomasz Kwiatkowski;Michal Jedrzejczyk;Afaque Shams
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1310-1319
    • /
    • 2024
  • The reactor cavity cooling system (RCCS) is a passive reactor safety system commonly present in the designs of High-Temperature Gas-cooled Reactors (HTGR) that removes heat from the reactor pressure vessel by means of natural convection and radiation. It is one of the factors responsible for ensuring that the reactor does not melt down under any plausible accident scenario. For the simulation of accident scenarios, which are transient phenomena unfolding over a span of up to several days, intermediate fidelity methods and system codes must be employed to limit the models' execution time. These models can quantify radiation heat transfer well, but heat transfer caused by natural convection must be quantified with the use of correlations for the heat transfer coefficient. It is difficult to obtain reliable correlations for HTGR RCCS heat transfer coefficients experimentally due to such a system's size. They could, however, be obtained from high-fidelity steady-state simulations of RCCSs. The Rayleigh number in RCCSs is too high for using a Direct Numerical Simulation (DNS) technique; thus, a Reynolds-Averaged Navier-Stokes (RANS) approach must be employed. There are many RANS models, each performing best under different geometry and fluid flow conditions. To find the most suitable one for simulating an RCCS, the RANS models need to be validated. This work benchmarks various RANS models against three experiments performed on the HTTR RCCS Mockup by the Japanese Atomic Energy Agency (JAEA) in 1993. This facility is a 1/6 scale model of a vessel cooling system (VCS) for the High Temperature Engineering Test Reactor (HTTR), which is operated by JAEA. Multiple RANS models were evaluated on a simplified 2d-axisymmetric geometry. They were found to reproduce the experimental temperature profiles with errors of up to 22% for the lowest temperature benchmark and 15% for the higher temperature benchmarks. The results highlight that the pragmatic turbulence models need to be validated for high Rayleigh natural convection-driven flows and improved accordingly, more publicly available experimental data of RCCS resembling experiments is needed and indicate that a 2d-axisymmetric geometry approximation is likely insufficient to capture all the relevant phenomena in RCCS simulations.

A Numerical Study On Thermal Characteristics of HALE UAV Solar Arrays (HALE 무인기의 태양전지 열특성에 관한 해석적 연구)

  • Song, Ji-Han;Nam, Yoonkwang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, a numerical analysis is made of the fluid flow and heat transfer characteristics in the solar arrays of HALE (High Altitude Lond Endurance) UAV. In the stratosphere where UAV operates, high level solar radiation is induced, heat transfer decreases due to natural convection and forced convection is dominated by ambient flow. In order to predict the solar array temperature range in this environment condition, the conjugate heat transfer analysis was carried out for the solar arrays on the main wing. The investigation focused on the temperature distribution of solar array and heat transfer characteristics according to influence of solar energy, flight condition as vehicle speed, air density, temperature.

Optimization of Evaporator for a Vapor Compression Cooling System for High Heat Flux CPU (고발열 CPU 냉각용 증기 압축식 냉각 시스템의 증발기 최적화)

  • Kim, Seon-Chang;Jeon, Dong-Soon;Kim, Young-Lyoul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.255-265
    • /
    • 2008
  • This paper presents the optimization process of evaporator for a vapor compression cooling system for high heat flux CPU. The CPU thermal capacity was given by 300W. Evaporating temperature and mass flow rate were $18^{\circ}C$ and 0.00182kg/s respectively. R134a was used as a working fluid. Channel width(CW) and height(CH) were selected as design factors. And thermal resistance, surface temperature of CPU, degree of superheat, and pressure drop were taken as objective responses. Fractional factorial DOE was used in screening phase and RSM(Response Surface Method) was used in optimization phase. As a result, CW of 2.5mm, CH of 2.5mm, and CL of 484mm were taken as an optimum geometry. Surface temperature of CPU and thermal resistance were $33^{\circ}C\;and\;0.0502^{\circ}C/W$ respectively. Thermal resistance of evaporator designed in this study was significantly lower than that of other cooling systems such as water cooling system and thermosyphon system. It was found that the evaporator considered in this work can be a excellent candidate for a high heat flux CPU cooling system.

A Study on the Nozzle Flow in the Sub-scale High-Altitude Test (축소형 고공환경모사 시험에서의 노즐 유동에 관한 연구)

  • Choi, Jiseon;Lee, Seongmin;Lee, Heejune;Ko, Youngsung;Kim, Seonjin;Lee, Jungmin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1011-1015
    • /
    • 2017
  • In this study, numerical and experimental studies on the nozzle flow in a sub-scale cold flow test were conducted to simulate high altitude condition. In the theoretical calculation, the temperature of the nozzle outlet is calculated to be lower than the liquefaction point, and the fluid exists at the phase change point. Also, numerical analysis result is higher than theory calculation but lower than liquefaction temperature. As a result of cold flow test, it was confirmed that the temperature was much higher than theory and analysis. This is because it assumed that it is adiabatic in the theoretical calculation, but the experiment in the actual environment is not the adiabatic but the heat exchange with the outside exists.

  • PDF

CRITICAL FLOW EXPERIMENT AND ANALYSIS FOR SUPERCRITICAL FLUID

  • Mignot, Guillaume;Anderson, Mark;Corradini, Michael
    • Nuclear Engineering and Technology
    • /
    • v.40 no.2
    • /
    • pp.133-138
    • /
    • 2008
  • The use of Supercritical Fluids(SCF) has been proposed for numerous power cycle designs as part of the Generation IV advanced reactor designs, and can provide for higher thermal efficiency. One particular area of interest involves the behavior of SCF during a blowdown or depressurization process. Currently, no data are available in the open literature at supercritical conditions to characterize this phenomenon. A preliminary computational analysis, using a homogeneous equilibrium model when a second phase appears in the process, has shown the complexity of behavior that can occur. Depending on the initial thermodynamic state of the SCF, critical flow phenomena can be characterized in three different ways; the flow can remain in single phase(high temperature), a second phase can appear through vaporization(high pressure low temperature) or condensation(high pressure, intermediate temperature). An experimental facility has been built at the University of Wisconsin to study SCF depressurization through several diameter breaks. The preliminary results obtained show that the experimental data can be predicted with good agreement by the model for all the different initial conditions.

An Analysis Study on Desuperheater valve attachment on Multi Water Spray Nozzles (다중 물 분사 노즐이 장착된 감온밸브의 해석 연구)

  • Lee, Deok-Gu;Cho, Haeng-Hoon;Cho, Nam-Cheol;Lee, Chae-Moon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.74-79
    • /
    • 2009
  • The generation of electric power and plant facilities have been attempting to improve energy efficiency with many efforts as those being basis of our country's economy. In particular, the CHP(Combined Heat Power plant) system, is producing the electricity and process steam, has generally been using for the cogeneration plants. When CHP system operates, the steam has to maintain the high temperature and high pressure in order to have high efficiency of electric power production as much as possible. In addition, the exhausted steam from the turbine has to reform proper temperature to use the needed process. The major purpose of desuperheater is that the superheated steam changes into the saturated steam because it is more efficient and suitable for using the process, furthermore, it is more convenient and stable regarding the process temperature control. The design of the desuperheater obtained through the experiment and preceding analysis. This paper is verified by analysis that water spray nozzle(${\Phi}$=28mm) shows the best ability under the real power plant condition.

  • PDF

Cure Behaviors and Physical Properties of Recycled/Virgin Nitrile Rubber (NBR) Blends by High Temperature Shear-Crushing Technique (고온전단분쇄기술을 이용한 재생/신재 니트릴고무(NBR) 블렌드물의 가황거동 및 물리적 특성)

  • Park, Hyun-Ho;Kim, Joon-Hyung;Lee, Chang-Seop;Na, Seong-Taek
    • Applied Chemistry for Engineering
    • /
    • v.16 no.6
    • /
    • pp.842-847
    • /
    • 2005
  • Virgin NBR and recycled NBR particles, which were pulverized from NBR scraps by high temperature shear-crushing technique, were blended with different mixing ratio. The effects of the recycled NBR content on the cure characteristics and physical properties of these blends were investigated and resistance properties of these blends to heat and various fluids were also studied. The study of cure characteristics showed that the viscosity increased but the scorch time decreased. The physical properties of rubber blends were improved with the addition of the recycled NBR for heat resistance and various fluid tests.

Numerical Analysis in a 1 kWe SOFC Stack for the Flow Phenomena (1 kWe 급 고체산화물 연료전지 스택에서의 유동 해석)

  • KUNWOO YI;YOUNG JIN KIM;HAOYUAN YIN;HYEON JIN KIM;KYONG SIK YUN;JI HAENG YU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.196-204
    • /
    • 2023
  • This study performed the numerical analysis of the internal flow phenomena of 1 kWe-class solid oxide fuel cell (SOFC) stacks with internal manifold type and planar cells using commercial computational fluid dynamics (CFD) software, Star-CCM+. In particular, the locations where the turbulent phenomena occur inside the SOFC stack were investigated. In addition, the laminar flow model and the standard k-ε turbulent model were used to calculate the SOFC stack, separately. And, the calculation results of both laminar and turbulent models were compared. The calculation results showed that turbulent phenomena occurred mainly in the cathode flow. Especially, the turbulent phenomena were found in the cathode inlet/outlet region, and local turbulence occurred in the end plate near the inlet pipe.

NUMERICAL ANALYSIS TO DESIGN HIGH TEMPERATURE HEAT EXCHANGER OF BETA TYPE STIRLING ENGINE IN 3-D COMBUSTION FIELD (3차원 연소장에서의 베타 형태의 스털링엔진 고온 열교환기 설계를 위한 수치해석 연구)

  • Kang, S.H.;Kim, H.J.;Chung, D.H.
    • Journal of computational fluids engineering
    • /
    • v.16 no.2
    • /
    • pp.56-61
    • /
    • 2011
  • Numerical study is conducted to design the high temperature heat exchanger of Stirling engine by using the commercial CFD solver, FLUENT. The Fin-tube type of heat exchanger is designed as a reference model by considering the type of engine which is ${\beta}$-configuration. To find the optimal design of heat exchanger in heat transfer capacity numerical calculation is conducted by changing the shape, the number, and material of reference model in three-dimensional combustion field. Adjusted one-way constant velocity of working fluid that is helium is considered as the representative velocity of oscillating flow. The optimal design of heat exchanger considering the heat transfer capability is suggested by using the calculation results.

Study on Flow and Stress Analysis of Gas Turbine Blade (가스 터빈 블레이드의 유동 및 응력 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.67-72
    • /
    • 2011
  • Turbine blades operate under high temperature and pressure. The influence changes according to its width and angle. Thermal stress and pressure are important factors to analyze the stress distribution. The purpose of this study is to investigate the effects of loads on the gas turbine blade using thermal stress analysis. These analysis results show the gas fluid flow with a high pressure around the surface of blade. Gas temperature is related to the pressure of flow around the blade. The stress concentration around blade is shown and the concentration is due to the difference between suction side and pressure side of combustion gas.