• Title/Summary/Keyword: High Temperature Flow Mechanism

Search Result 126, Processing Time 0.026 seconds

The Adsorption of COS with a Modified-Activated Carbon for Ultra-Cleanup of Coal Gas (석탄가스의 초정밀 정제를 위한 변형된 활성탄의 흡착특성 연구)

  • Lee, You-Jin;Park, No-Kuk;Lee, Tae-Jin
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • The adsorption properties of the activated carbon-based adsorbents were studied to remove COS emitted from $SO_2$ catalytic reduction process on the integrated gasification combined cycle (IGCC) system in this work. Transition metal supported catalysts and mixed metal oxide catalysts were used for the $SO_2$ catalytic reduction. The mechanism of COS produced from the $SO_2$ reduction and the COS concentration s according to the reaction temperature were investigated. In this study, an activated carbon and a modified activated carbon doped with KOH were used to remove the very low concentration of COS effectively. The adsorption rate and the breakthrough time of COS were measured by a thermo gravity analyzer (TGA, Cahn Balance) and a fixed bed flow reactor equipped with GC-pulsed flammable photometric detector (PFPD), respectively. It was confirmed that the COS breakthrough time of the activated carbon doped with KOH was longer than that of an activated carbon. In conclusion, the modified-activated carbon having a high surface area showed a high adsorption rate of COS produced from the $SO_2$ reduction.

  • PDF

Synoptic Climatological Characteristics of Spring Droughts in Korea (한국의 춘계한발의 종관기후학적 특성)

  • Yang, Jin-Suk
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.43-56
    • /
    • 1998
  • The purpose of this study is to identify distributional characteristics of climatic elements and to analyze synoptic characteristics on the pressure fields for spring droughts in Korea. In the distributions of minimum temperature during the spring droughts, positive anomalies and negative anomalies are mixed up, but in March the negative anomaly areas are widely distributed in Korea. It implies that the droughts of March have more frequent occurrences of the west-high, east-low pressure patterns. In the maximum air temperatures, the positive anomalies appear in Korea. It indicates that the spring droughts have rain days, cloud amount and humidities less than normal. As a result, the amount of evaporation is increased in Korea. In the pressure anomaly of surface pressure fields, the positive anomalies appear in the west, negative anomalies in the east in March, but in May the positive anomalies appeared zonally around the Korean peninsula. It indicates that March droughts have more frequent occurrences of the west-high. east-low patterns, but in May the Korean Peninsula has more frequent recurrences of the migratory anticyclone patterns. The height anomaly patterns of 500hPa pressure surface in spring droughts are similarly shown to those of surface fields. In March droughts, the positive height anomalies appear in the west, the negative height anomalies in the east, but in April the negative height anomaly areas are extended to the west part. In May the positive anomalies appear zonally around the Korean Peninsula, and strong positive height anomalies appear around the Kamchatka Peninsula and the sea of Okhotsk. These are the result of circulations that inhibit the eastward movement of westerlies and that has persistent anticyclone circulation patterns around the Korean Peninsula. As a result, the zonal indices of westerlies during March and April droughts are lower than normal, but higher in May. These data indicate that early spring droughts are associated with weak zonal flow, but the late spring droughts are obviously related with strong zonal flow. In addition, during early spring droughts the abnormally deep trough over the west coast of the North Pacific Ocean that accompanied the anticyclone was associated with frequent advection of air from the dry regions in the Central Asia into the Korean Peninsula. The atmospheric circulation patterns at the height of the 500hPa pressure surface in May was quite different from March and April circulation patterns. Instead of the abnormal ridge in the west and trough in the east, the circulation pattern in May was characterized by a much stronger than normal anticyclone over the Korean Peninsula. Also, the zonal indices of westerlies in May are higher than normal. The occurrences of drought in early spring, therefore, have mechanism different from those of late spring.

  • PDF

A Study on the Optimum Design of Multiple Screw Type Dryer for Treatment of Sewage Sludge (하수슬러지 처리를 위한 다축 스크류 난류 접촉식 건조기의 최적 설계 연구)

  • Na, En-Soo;Shin, Sung-Soo;Shin, Mi-Soo;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.223-231
    • /
    • 2012
  • The purpose of this study is to investigate basically the mechanism of heat transfer by the resolution of complex fluid flow inside a sophisticated designed screw dryer for the treatment of sewage sludge by using numerical analysis and experimental study. By doing this, the result was quite helpful to obtain the design criteria for enhancing drying efficiency, thereby achieving the optimal design of a multiple screw type dryer for treating inorganic and organic sludge wastes. One notable design feature of the dryer was to bypass a certain of fraction of the hot combustion gases into the bottom of the screw cylinder, by the fluid flow induction, across the delicately designed holes on the screw surface to agitate internally the sticky sludges. This offers many benefits not only in the enhancement of thermal efficiency even for the high viscosity material but also greater flexibility in the application of system design and operation. However, one careful precaution was made in operation in that when distributing the hot flue gas over the lump of sludge for internal agitation not to make any pore blocking and to avoid too much pressure drop caused by inertial resistance across the lump of sludge. The optimal retention time for rotating the screw at 1 rpm in order to treat 200 kg/hr of sewage sludge was determined empirically about 100 minutes. The corresponding optimal heat source was found to be 150,000 kcal/hr. A series of numerical calculation is performed to resolve flow characteristics in order to assist in the system design as function of important system and operational variables. The numerical calculation is successfully evaluated against experimental temperature profile and flow field characteristics. In general, the calculation results are physically reasonable and consistent in parametric study. In further studies, more quantitative data analyses such as pressure drop across the type and loading of drying sludge will be made for the system evaluation in experiment and calculation.

Coupled Thermal-Hydrological-Mechanical Behavior of Rock Mass Surrounding Cavern Thermal Energy Storage (암반공동 열에너지저장소 주변 암반의 열-수리-역학적 연계거동 분석)

  • Park, Jung-Wook;Rutqvist, Jonny;Ryu, Dongwoo;Synn, Joong-Ho;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2015
  • The thermal-hydrological-mechanical (T-H-M) behavior of rock mass surrounding a high-temperature cavern thermal energy storage (CTES) operated for a period of 30 years has been investigated by TOUGH2-FLAC3D simulator. As a fundamental study for the development of prediction and control technologies for the environmental change and rock mass behavior associated with CTES, the key concerns were focused on the hydrological-thermal multiphase flow and the consequential mechanical behavior of the surrounding rock mass, where the insulator performance was not taken into account. In the present study, we considered a large-scale cylindrical cavern at shallow depth storing thermal energy of $350^{\circ}C$. The numerical results showed that the dominant heat transfer mechanism was the conduction in rock mass, and the mechanical behavior of rock mass was influenced by thermal factor (heat) more than hydrological factor (pressure). The effective stress redistribution, displacement and surface uplift caused by heating of rock and boiling of ground-water were discussed, and the potential of shear failure was quantitatively examined. Thermal expansion of rock mass led to the ground-surface uplift on the order of a few centimeters and the development of tensile stress above the storage cavern, increasing the potential of shear failure.

A Study on change in thermal properties and chemical structure of Zr-Ni delay system by aging (노화에 따른 Zr-Ni계 지연관의 열 특성 및 화학적 구조 변화에 관한 연구)

  • Park, Byung Chan;Chang, Il Ho;Kim, Sun Tae;Hwang, Taek Sung;Lee, Seungho
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.285-292
    • /
    • 2009
  • It has been observed that, after long term storage, some ammunitions are misfired by tamping (combustionstopping) due to aging of the chemicals loaded in the ammunitions. Used in ammunitions are percussion powder which provides the initial energy, igniter which ignites the percussion powder, and a delay system that delays the combustion for a period of time. The percussion powder is loaded first, followed by the igniter and then the delay system, and the ammunitions explode by the energy being transferred in the same order. Tamping occurs by combustion-stopping of the igniter or insufficient energy transfer from the igniter to the delay system or the combustion-stopping of the delay system, which are suspected to be caused by low purity of the components, inappropriate mixing ratio, size distribution of particulate components, type of the binder, blending method, hydrolysis by the humidity penetrated during the long term storage, and chemical changes of the components by high temperature. Goal of this study is to find the causes of the combustion-stopping of the igniter and the delay system of the ammunitions after long term storage. In this study, a method was developed for testing of the combustion-stopping, and the size distributions of the particulate components were analyzed with field-flow fractionation (FFF), and then the mechanism of chemical change during long term storage was investigated by thermal analysis (differential scanning calorimetry), XRD (X-ray diffractometry), and XPS (X-ray photoelectron spectroscopy). For the ignition system, M (metal)-O (oxygen) and M-OH peaks were observed at the oxygen's 1s position in the XPS spectrum. It was also found by XRD that $Fe_3O_4$ was produced. Thus it can be concluded that the combustion-stopping is caused by reduction in energy due to oxidation of the igniter.

Natural Treatment of Wastewater from Industrial Complex in Rural Area by Subsurface Flow Wetland System (인공습지에 의한 농공단지 폐수처리)

  • Yoon, Chun-Gyeong;Lim, Yoong-Ho;Kim, Hyung-Joong
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.170-174
    • /
    • 1997
  • Constructed wetland system was studied to treat wastewater from industrial complex in rural area. Pilot plant at the Baeksuk Nongkong Danzi in Chunahn-City was used for field study. For the DO, the effluent concentration was higher than the influent concentration and it implies that natural reaeration supplies enough oxygen to the system. For the SS, the effluent concentration was consistently lower than the water quality standard even though the influent concentration varied significantly, which showed that SS was removed by the system effectively which is consist of soil and plants. For the BOD and COD, the average removal rate of them were 56% and 43%, respectively, therefore, the effluent concentration could not meet water quality standards when influent concentration was high. The removal rate of BOD and COD can be improved by supplemental treatment in addition to this system if necessary. For the T-N and T-P, the influent concentration of them were lower than the water quality standards than no further treatment was needed. Overall, the result showed that constructed wetland system is a feasible alternative for the treatment of wastewater from industrial complex in rural area. For actual application of this system, further study on design factors including loading rate, removal mechanism, and temperature effects is required to meet water quality standard consistently. Compared to existing systems, this system is quite competitive because it requires low capital cost, almost no energy and maintenance, and therefore, very cost effective.

  • PDF