• Title/Summary/Keyword: High Temperature Fatigue

Search Result 449, Processing Time 0.026 seconds

A Study on the Development of Forging Process for Steam Turbine Titanium Blade (증기터빈 티타늄 블레이드의 단조공정 개발에 관한 연구)

  • Kim Y. H.;Cho J. R.;Jeong H. S.;Park H. C.;Lee N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.354-357
    • /
    • 2005
  • When Ti-6Al-4V is used in long steam turbine blades, the main issues are how to improve the fatigue strength as a problem of internal quality and how to forge the thinnest possible blades as problem of dimensional precision. To assure an excellent fatigue strength, it is important to make the two phase fine and equiaxial structure by providing enough plastic deformation in the two phase$(\alpha\;phase/\beta\;phase)$ temperature region. Accordingly, it needs to predict that forging temperature, preform design and forging velocity in forging process. To achieve this end, the two steps forging process was suggested to forge the thin and twisted blades with a precision hammer considering die forces and metal flow. Two steps forging process consists of the flattening forging process and finishing forging process. Process in forging of a 1016mm long steam turbine blade is designed by the finite element method. This study attempts to derive systematic design procedures for process design in the forging. Forging parameters was analyzed in two-dimensional plane-strain simulation and two steps forging process carried out in three-dimensional simulation. Consequently, optimal forging process parameters of long steam turbine blades in Ti-6Al-4V with a high dimensional precision are selected in the hammer die forging.

  • PDF

A Study on the Degradation Evaluation of X20CrMoV12.1 Steel (X20CrMoV12.1강의 열화평가에 관한 연구)

  • Lee, S.H.;Kim, T.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.1
    • /
    • pp.58-64
    • /
    • 2012
  • Power plant boiler is one of the most important utilities providing steam to turbine in thermal power plant. It is composed of thousands of boiler tubes for high efficient heat transfer. Boiler tube material is used in such high temperature and pressure as $540^{\circ}C$, $170kg/mm^2$. The boiler tube material is needed to resist corrosion damage, creep damage and fatigue damage. 2.25%Cr-1Mo steel is used for conventional boiler tubes. In these days steam temperature and pressure of the power plant became higher for high plant efficiency. So, the material property of boiler tube must be upgraded to meet the plant property. Several boiler tube material was developed to meet such condition. X20CrMoV12.1 steel is also developed in early 1980's and used for superheater and reheater tubes in supercritical boilers. The material has martensitic structure, which is difficult to evaluate the material degradation. Boiler tube material at severe condition was tested to evaluate long term and short term degradation and creep. Through long term and high temperature degradation test, lath structure was decreased and recrystallization has been proceeded by sub-crystal. And in this research the effect of temperature and stress on boiler tube characteristic,for example, deformation by creep was changed rapidly at relatively high temperature and stress because creep was affected easily by temperature and stress.

A Study on the Creep Characteristics of Solder of 63 Sn-37Pb (63Sn-37Pb 땜납의 크리프 특성에 관한 연구)

  • 이억섭;김의상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.138-144
    • /
    • 2004
  • The initiation and the propagation of solder joint crack depend on its environmental conditions, such as high temperature creep and thermal fatigue. Creep is known to be the most important factor for the mechanical failure of solder joints in micro-electronic components and micro-systems. This is mainly caused by the different thermal expansion coefficients of the materials used in the micro-electronic packages. To determine the reliability of solder joints and consequently the electronic components, the characterization of the creep behavior of this group of materials is crucial. This paper is to apply the theory of creep into solder joints and to provide related technical information needed for evaluation of reliability of solder joint to failure. 63Sn-37Pb solder was used in this study. This paper experimentally shows a way to enhance the reliability of solder joints.

Numerical Analysis for Residual Stress Relaxation of Weld Zone (용접부 잔류응력의 이완에 관한 해석)

  • Seo, Jung-Won;Goo, Byung-Chun;Lee, Dong-Hyeong;Jung, Hong-Che
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.43-48
    • /
    • 2003
  • The problem of welding stresses and fatigue behavior is the main concerns of welding research fields. The residual stresses and distortion of structures by welding is exert negative effect on the safety of mechanical structures. That is, expansion of material by high temperature and distortion by cooling during welding process is caused of tensile and compressive residual stresses on welding material, and this residual stresses reduce fracture and fatigue strength of welding structures. The accurate prediction of residual stress and relaxation due to loading and post weld heat treatment of weld zone is very important to improve the quality of weldment. In this study, a finite element modeling technique is developed to simulate the relaxation of residual stresses due to loading and post weld heat treatment of weld zone. The accuracy of finite element models is evaluated based on experimental results and the results of the analytical solution.

  • PDF

Effects of Thermomechanical Treatment on 7075-Al Alloy (7075-Al 합금에 대한 가공 열처리 효과에 관한 연구)

  • Choi, S.C.;Kang, C.S.
    • Journal of Korea Foundry Society
    • /
    • v.1 no.2
    • /
    • pp.10-18
    • /
    • 1981
  • In this paper tensile strength and fatigue propagation rate were investigated by aging treatment $(T_6)$ and thermomechanical treatment (TMT) of 7075-Al Alloy specimen. The results of teat showed that TMT improved tensile strength and fatigue crack propagation due to bomogenization of microstructure. In TMT, the results of comparison between T-H' AHA and T-AHA and $T-AH{\cdot}{\cdot}{\cdot}$and $T-HA{\cdot}{\cdot}{\cdot}$were showed that T-AHA and $T-AH{\cdot}{\cdot}{\cdot}$treatments, after solution treatment, which are aging treated before rolling have higher tensile strength. Our investigation on high temperature stability at the Specimen for $T_6$, T-AHA, $T-AH{\cdot}{\cdot}{\cdot}$treatments resulted in rapid reduction of tensile strength over $150^{\circ}C$, but the reduction of tensile strength for specimen of TMT was smoothed than $T_6$.

  • PDF

An Evaluation of Reliability of the Spur Gear Using the Accelerated Durability Analysis (가속내구해석을 이용한 평기어의 신뢰성 평가)

  • Kim Chul-Su;Kim Jung-Kyu;Kwon Yeo-Hyoun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.722-727
    • /
    • 2004
  • The gear that is used in various mechanical components occurs easily damages due to the repeated torque and the high oil temperature. The main failure mode of the gear is the surface deterioration with the tooth surface fatigue. Therefore, the life evaluation and the failure analysis of the gear were very important since it may cause fatal damage of entire gear box system. In this paper, the failure mechanism and the life of the gear were evaluated using the durability analysis simulator such as MSC.FATIGUE. Moreover, the reliability analysis model of the spur gear with the accelerated life testing technique was proposed.

  • PDF

Crack Growth Life Estimation and Reliability Analysis of High Temperature Turbine (고열 터빈의 균열성장수명 평가 및 신뢰성 분석)

  • Jang, Byung-Wook;Park, Jung-Sun;Kim, Hyun-Jae;Chen, Seung-Bae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.350-353
    • /
    • 2009
  • In the fatigue analysis and the components design, uncertainties are caused by the variances of geometry data and applied loads, and the scatter of material properties. In this paper, fatigue crack growth life of turbine is evaluated by fracture mechanics and the reliability analysis is accessed by the fist order second moment method and Monte Carlo simulation.

  • PDF

A Study on the Effects of Demographic Characteristics of Culinary Employees on Their Job Fatigue (조리 종사원의 인구통계학적 특성이 신체 통증 유발에 미치는 영향)

  • Lee, Ken-Ho;Chung, Hea-Jung;Cheon, Hee-Sook
    • Culinary science and hospitality research
    • /
    • v.14 no.3
    • /
    • pp.16-30
    • /
    • 2008
  • Rapid change of surroundings has been influencing the work environment for cooks, making it more convenient; however, there are still many difficulties to improve. Especially, cooks are exposed to lots of occupational diseases due to tension and pressure as well as noise, high temperature and humidity in their work place. This study examines cooks' operational exhaustion caused by cooking operation and cooking circumstances. The analyzed result shows the job fatigue related to the general features of the cooks(such as charged cooking part, types of engaged business, class of position, cooking career, and working hours). For example, pains on the neck, back, arms and wrist are mostly affected by the charged cooking parts. Effects related to the types of engaged business, backaches usually occurred in Catering, pains in shoulder from serving at hotels and eye-tiredness from meal serving. As for working hours, most of backaches occurred from over 13-hour-work, and pains in shoulder and eye-tiredness under 8-hour-work. Pains in legs, tiredness, and the change of weight do not have any relations withthe general features of the cooks statistically(p>0.05).

  • PDF

Working Conditions and Health Status of Delivery Workers (배달종사자의 근로환경과 건강)

  • Lee, Bokim
    • Korean Journal of Occupational Health Nursing
    • /
    • v.28 no.3
    • /
    • pp.156-165
    • /
    • 2019
  • Purpose: The purpose of this study was to compare working condition and health status between parcel delivery workers (PDW) and food delivery workers (FDW) and to examine the factors influencing their health status. Methods: This was a secondary analysis of data collected from the fifth Korean Working Conditions Survey (KWCS). Based on existing literature, a set of variables was chosen from the KWCS. Results: The proportion of PDW who carryied/moved heavy loads and experienced high job stress and lack of rest time was significantly higher than that of FDW. However, more FDW than their counterparts worked atypical hours. The differences in fatigue and well-being between PDW and FDW were not statistically significant. The multiple logistic regression analysis revealed low temperature, tobacco smoke, standing for long periods, and job stress were significant predictors of fatigue or well-being of FDW. Among PDW, noise, tobacco smoke, sitting for long periods, quantitative demands, hiding emotions, support from colleagues, job stress, no recovery period, and night work were significant predictors of fatigue or well-being. Conclusion: The findings of this study may be useful in developing nursing interventions for disease protection health promotion of delivery workers.

Failure Analysis of an Inlet Pipe of a Governor Valve in a Steam Turbine of a District Heating System (지역난방 증기 터빈 내 조속기 밸브 Inlet pipe 파손 원인 분석)

  • Chae, Hobyung;Kim, Woo Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2022
  • The objective of this study was to perform failure analysis of an inlet pipe located in a governor valve of a steam turbine in a district heating system. During the operation, the temperature of the governor valve was increased to as high as ~500 ℃, which induced thermal expansion of the inlet pipe along both axial and radial directions. While the inlet pipe did not have contact with the valve seat, the side plane of the upside was constrained by the casing part, which led the inlet pipe to experience stress field in the form of fatigue and creep. The primary crack was initiated at about 30 mm below the top where the complex stress field was anticipated. These results suggest that the main failure mechanism is a combination of thermal fatigue and creep during the operation supported by the observation of apparent beach marks on the fracture surface and pores near the cracks, respectively.