• 제목/요약/키워드: High Temperature Deformation Behavior

검색결과 298건 처리시간 0.026초

고질소강의 열간압연시 변형거동 및 압연효과 (Deformation Behavior & Rolling Effect on the Hot Rolling of High Nitrogen Stainless Steel)

  • 김영득;김동권;이종욱;배원병
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.329-332
    • /
    • 2008
  • Nowadays, It is required human body-friendly, good mechanical properties, and economical efficiency material, simultaneously. The material to meet above requirement condition rear up high nitrogen stainless steel(HNS). However, HNS have a lot of problem such as poor workability, hot crack sensitivity. So, It is needed the condition of plastic working to overcome above many problem. In this study, VIM ingot with 100kg was made by pressurized vacuum induction melting. And then, The slab perform for hot rolling was prepared by open-die forging. Hot rolling process was performed by computer simulation according to change of height reduction, rolling temperature, heating numbers, rolling pass and so forth. The results of analysis were investigated between analysis and lab-scale rolling product.

  • PDF

마그네슘합금의 초소성 특성과 응용 (Superplasticity of Magnesium Alloys and SPF Applications)

  • 심재동;변지영
    • 한국재료학회지
    • /
    • 제27권1호
    • /
    • pp.53-61
    • /
    • 2017
  • Magnesium alloys are of emerging interest in the automotive, aerospace and electronic industries due to their light weight, high specific strength, damping capacity, etc. However, practical applications are limited because magnesium alloys have poor formability at room temperature due to the lack of slip systems and the formation of basal texture, both of which characteristics are attributed to the hcp crystal structure. Fortunately, many magnesium alloys, even commercialized AZ or ZK series alloys, exhibit superplastic behavior and show very large tensile ductility, which means that these materials have potential application to superplastic forming (SPF) of magnesium alloy sheets. The SPF technique offers many advantages such as near net shaping, design flexibility, simple process and low die cost. Superplasticity occurs in materials having very small grain sizes of less than $10{\mu}m$ and these small grains in magnesium alloys can be achieved by thermomechanical treatment in conventional rolling or extrusion processes. Moreover, some coarse-grained magnesium alloys are reported to have superplasticity when grain refinement occurs through recrystallization during deformation in the initial stage. This report reviews the characteristics of superplastic magnesium alloys with high-strain rate and coarse grains. Finally, some examples of SPF application are suggested.

AZ계 마그네슘 합금의 열간 정수압 압출특성 연구 (The Characteristics of Hot Hydrostatic Extrusion of AZ Magnesium Alloy)

  • 윤덕재;유봉선;임성주;김응주
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.62-65
    • /
    • 2008
  • Extrusion characteristics of Mg alloys were studied experimentally. The Al-Zn-Mg alloys, AZ31, AZ6l, AZ80, and AZ91 were extruded with hot hydrostatic extrusion process. The hydrostatic process was efficient to reduce surface friction and extend steady state region in extrusion which made it more convenient to examine deformation behavior of the alloys avoiding the disturbance caused by temporary contact state between billet and die, and billet and container. High pressure was cooperative to expand forming limit of the alloys which were applied on the billet during the extrusion process. Extrusion limits were traced in temperature and extrusion speed domain with changing composition of the alloying elements. Effects of process parameters on extrusion load and microstructure evolution were investigated also.

  • PDF

Al 7075 합금의 크리이프 파단수명에 관한 연구(II) (A Study on the Creep Fracture Life of Al 7075 Alloy(II))

  • 강대민
    • 한국안전학회지
    • /
    • 제9권4호
    • /
    • pp.29-41
    • /
    • 1994
  • High temperature tensiles tests, steady state creep tests, internal stress tests and creep rupture tests using Al 7075 alloy were performed over the temperature range of 9$0^{\circ}C$~50$0^{\circ}C$ and stress range of 0.64~17.2(kgf/$\textrm{mm}^2$) in order to investigate the creep behavior and predict creep rupture life From the apparent activation energy Qc and the applied stress exponent n measured, at the temperature range of 9$0^{\circ}C$~l2$0^{\circ}C$, the creep deformation seemed to be controlled by cross slip. On the other hand at the temperature of 20$0^{\circ}C$~23$0^{\circ}C$ the creep deformation seemed to be controlled by dislocation climb but at 47$0^{\circ}C$~50$0^{\circ}C$, by diffusion creep. And the rupture life(t$_{f}$) might be represented by anthermal process attributed to the difference of the applied stress dependence of Internal stress and the ratio of the Internal stress to the applied stress, the thermal activated process attributied to the temperature dependence of the internal stress. Also the ratio between stress dependence of primary creep rate and that of minimum creep rate was measured 0.46, the minimum creep rate is expected to be appromately obtained from master creep curve including the relationship primary creep rate and minumum creep rate. Finally the relationship new rupture parameter and logarithmic stress was represented with including the ratio between the dependence of primary creep rate and that of minimum creep rate, using the new rupture parameter the rupture life predition is exactly expected.d.

  • PDF

Failure Pressure Prediction of Composite Cylinders for Hydrogen Storage Using Thermo-mechanical Analysis and Neural Network

  • Hu, J.;Sundararaman, S.;Menta, V.G.K.;Chandrashekhara, K.;Chernicoff, William
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.233-249
    • /
    • 2009
  • Safe installation and operation of high-pressure composite cylinders for hydrogen storage are of primary concern. It is unavoidable for the cylinders to experience temperature variation and significant thermal input during service. The maximum failure pressure that the cylinder can sustain is affected due to the dependence of composite material properties on temperature and complexity of cylinder design. Most of the analysis reported for high-pressure composite cylinders is based on simplifying assumptions and does not account for complexities like thermo-mechanical behavior and temperature dependent material properties. In the present work, a comprehensive finite element simulation tool for the design of hydrogen storage cylinder system is developed. The structural response of the cylinder is analyzed using laminated shell theory accounting for transverse shear deformation and geometric nonlinearity. A composite failure model is used to evaluate the failure pressure under various thermo-mechanical loadings. A back-propagation neural network (NNk) model is developed to predict the maximum failure pressure using the analysis results. The failure pressures predicted from NNk model are compared with those from test cases. The developed NNk model is capable of predicting the failure pressure for any given loading condition.

분무 주조 과공정 Al-Si 계 합금의 응력이완 및 Creep 천이 거동 (Load Relaxation and Creep Transition Behavior of a Spray Casted Hypereutectic Al-Si Alloy)

  • 김민수;방원규;박우진;장영원
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.502-508
    • /
    • 2005
  • Hypereutectic Al-Si alloys have been regarded attractive for automotive and aerospace application, due to high specific strength, good wear resistance, high thermal stability, low thermal expansion coefficient and good creep resistance. Spray casting of hypereutectic Al-Si alloy has been reported to provide distinct advantages over ingot metallurgy (IM) or rapid solidification/powder metallurgy (RS/PM) process in terms of microstructure refinement. In this study, hypereutectic Al-25Si-2.0Cu-1.0Mg alloy was prepared by OSPREY spray casting process. The change of strain rate sensitivity and Creep transition were analyzed by using the load relaxation test and constant creep test. High temperature deformation behavior of the hypereutectic Al-Si alloy has been investigated by applying the internal variable theory proposed by Chang et al. Especially, the creep resistance of spray casted hypereutectic Al-Si alloy can be enhanced considerably by the accumulation of prestrain.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

플립 칩 패키지 솔더의 탄소성 거동과 크립 해석 (Elastoplastic Behavior and Creep Analysis of Solder in a FC-PBGA Package)

  • 최남진;이봉희;주진원
    • 마이크로전자및패키징학회지
    • /
    • 제17권2호
    • /
    • pp.21-28
    • /
    • 2010
  • 본 논문에서는 온도 사이클이 진행되는 동안 비선형 거동과 크립 거동을 보이는 FC-PBGA 패키지 솔더볼의 변형거동을 알아보기 위하여 시간에 종속하는 거동을 적용 시킬 수 있는 점소성 모델과 크립 모델에 대하여 유한요소해석을 수행하였다. 유한요소해석 결과의 신뢰성을 평가하기 위하여 무아레 간섭계를 이용하여 온도변화에 따른 열변형 실험을 수행하였다. 전체적인 굽힘변위는 Anand 모델과 변형률 분리 모델 모두 실험결과와 잘 일치하였으나 솔더볼의 변형률은 Anand 모델의 경우 큰 차이를 보이고 변형률 분리 모델의 경우 상당히 일치하는 계산결과를 얻었다. 따라서 본 논문에서는 변형률 분리 모델을 이용하여 시간에 종속하는 FC-PBGA 패키지 솔더볼의 크립 거동을 검토하였다. 솔더를 포함한 패키지에 온도변화가 생길 때 고온에서는 시간이 지남에 따라 크립 거동에 의해 솔더의 응력이 점차 완화되는 현상을 나타내고 있음을 알 수 있었다.

Small and Large Deformation Rheological Behaviors of Commercial Hot Pepper-Soybean Pastes

  • Choi, Su-Jin;Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.871-876
    • /
    • 2006
  • Rheological behavior of commercial hot pepper-soybean paste (HPSP) was evaluated in small amplitude oscillatory and steady shear tests. Storage modulus (G'), loss modulus (G"), and complex viscosity (${\eta}^*$) as a function of angular frequency (${\omega}$), and shear stress (${\sigma}$) as a function of shear rate (${\gamma}$) data were obtained for 5 commercial HPSP samples. HPSP samples at $25^{\circ}C$ exhibited a non-Newtonian, shear-thinning flow behavior with high yield stresses and their flow behaviors were described by power law, Casson, and Herschel-Bulkley models. Time-dependent flow properties were also described by the Weltman, Hahn, and Figoni & Shoemaker models. Apparent viscosity over the temperature range of $5-35^{\circ}C$ obeyed the Arrhenius temperature relationship with activation energies (Ea) ranging 18.3-20.1 kJ/mol. Magnitudes of G' and G" increased with an increase in ${\omega}$, while ${\eta}^*$ decreased. G' values were higher than G" over the most of the frequency range (0.63-63 rad/sec), showing that they were frequency dependent. Steady shear viscosity and complex viscosity of the commercial HPSP did not fit the Cox-Merz rule.

재결정제어압연용 저탄소강의 연속냉각 상변태거동에 미치는 Nb 첨가효과 (Effect of Nb Addition on Phase Transformation Behavior during Continuous Cooling in Low Carbon Steels for Recrystallization Control Rolling)

  • 이상우;주웅용
    • 열처리공학회지
    • /
    • 제13권5호
    • /
    • pp.346-354
    • /
    • 2000
  • Effect of Nb addition on the phase transformation behavior was studied through continuous cooling transformation tests after reheating(reheating CCT) and deforming(deforming CCT) the 0.07%C-1.3%Mn-0.015%Ti-(0~0.08)% Nb steels. Transformation temperatures for deforming CCT were lower than those for reheating CCT, and the critical cooling rate for bainite transformation during deforming CCT was lower than that during reheating CCT. These enhanced hardenability for deforming CCT was considered to come from the sufficient solid solution of Nb in austenite during high temperature reheating before deformation. With Nb addition, the phase transformation temperature decreased, the bainite formation was enhanced, and the hardness of steel increased. Furthermore, these phenomena were more remarkable for deforming CCT than for reheating CCT. From the results, Nb-Ti bearing low carbon steel was considered to be a very favorable alloy system with good strength/toughness balance by recrystallization control rolling process.

  • PDF