• Title/Summary/Keyword: High Temperature Deformation Behavior

Search Result 295, Processing Time 0.033 seconds

Thermo-mechanical Behavior of WB-PBGA Packages Considering Viscoelastic Material Properties (점탄성 물성치를 고려한 WB-PBGA 패키지의 열-기계적 변형 거동)

  • Kim, Man-Ki;Joo, Jin-Won
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.17-28
    • /
    • 2012
  • It is known that thermo-mechanical properties of solder material and molding compound in WB-PBGA packages are considerably affected by not only temperature but elapsed time. In this paper, finite element analysis (FEA) taking material nonlinearity into account was performed for more reliable prediction on deformation behavior of a lead-free WB-PBGA package, and the results were compared with experimental results from moire interferometry. Prior to FEA on the WB-PBGA package, it was carried out for two material layers consisting of molding compound and substrate in terms of temperature and time-dependent viscoelastic effects of molding compound. Reliable deformation analysis for temperature change was then accomplished using viscoplastic properties for solder ball and viscoelastic properties for molding compound, and the analysis was also verified with experimental results. The result showed that the deformation of WB-PBGA packages was strongly dependent on material model of molding compound; thus, temperature and time-dependent viscoelastic behavior must be considered for the molding compound analysis. In addition, viscoelastic properties of B-type molding compound having comparatively high glass transition temperature of $135^{\circ}C$ could be recommended for reliable prediction on deformation of SAC lead-free WB-PBGA packages.

Nonlinear thermal post-buckling behavior of graphene platelets reinforced metal foams conical shells

  • Yin-Ping Li;Lei-Lei Gan;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.383-391
    • /
    • 2024
  • Conical shell is a common engineering structure, which is widely used in machinery, civil and construction fields. Most of them are usually exposed to external environments, temperature is an important factor affecting its performance. If the external temperature is too high, the deformation of the conical shell will occur, leading to a decrease in stability. Therefore, studying the thermal-post buckling behavior of conical shells is of great significance. This article takes graphene platelets reinforced metal foams (GPLRMF) conical shells as the research object, and uses high-order shear deformation theory (HSDT) to study the thermal post-buckling behaviors. Based on general variational principle, the governing equation of a GPLRMF conical shell is deduced, and discretized and solved by Galerkin method to obtain the critical buckling temperature and thermal post-buckling response of conical shells under various influencing factors. Finally, the effects of cone angles, GPLs distribution types, GPLs mass fraction, porosity distribution types and porosity coefficient on the thermal post-buckling behaviors of conical shells are analyzed in detail. The results show that the cone angle has a significant impact on the nonlinear thermal stability of the conical shells.

Estimation of Thermal Behavior for the Machine Origin of Machine Tools using GMOH Methodology (GMOH 기법에 의한 공작기계 원점의 열적거동 예측)

  • 안중용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.213-218
    • /
    • 1997
  • Thermal deformation of machine origin of machine tools due to internal and external heat sources has been the most important problem to fabricate products with higher accuracy and performance. In order to solve this problem, GMDH models were constructed to estimate thermal deformation of machine origin for a vertical machining ceneter through measurement of temperature data of specific points on the machine tool. These models are nonlinear equations with high-order polynomials and implemented in a multilayered perceptron type network structure. Input variables and orders are automatically selected by correlation and optimization procedure. Sensors with small influence are deleted automatically in this algorithm. It was shown that the points of temperature measurement can be reduced without sacrificing the estimation accuracy of $\pm$5${\mu}{\textrm}{m}$. From the experimental result, it was confirmed that GMDH methodology was superior to least square models to estimate the thermal behavior of machine tools.

  • PDF

The Analysis of Deformation Behavior in Thin Slab Caster (박슬라브 연주주편 변형 거동해석)

  • 배원병;박해두;이호국
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03a
    • /
    • pp.165-171
    • /
    • 1996
  • Recently, to improve the productivity in the continuous casting process, thin slab continuous caster which is one of the new steelmaking technologies by a high speed casting has been introduced. In the process of the thin slab continuous cast, there is more possibility than convnetional one that the deformation be occurred by the bulging of solidified shell, since the thickness of soliidfied shell is very thin as much as 60mm after the casting is finished. In some cases of severe bulging, there might be more breakout. In this paper, using finite difference method , solification analysis of slab is made as well as the thicknessof solidified shell and temperature are calculated. Also, based on the data of the calculated temperature, the deformed behavior of solidified narrow face is anlayzed with the MARC which is a package program for finite element analysis.

  • PDF

Temperature Dependence on Elastic Constant of SiC Ceramics (SiC 세라믹스 탄성률의 온도 의존성)

  • Im, Jong-In;Park, Byoung-Woo;Shin, Ho-Yong;Kim, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.491-497
    • /
    • 2010
  • In this paper, we employed the classical molecular dynamics simulations using Tersoff's potential to calculate the elastic constants of the silicon carbide (SiC) crystal at high temperature. The elastic constants of the SiC crystal were calculated based on the stress-strain characteristics, which were drawn by the simulation using LAMMPS software. At the same time, the elastic constants of the SiC ceramics were measured at different temperatures by impulse excitation testing (IET) method. Based on the simulated stress-strain results, the SiC crystal showed the elastic deformation characteristics at the low temperature region, while a slight plastic deformation behavior was observed at high strain over $1,000^{\circ}C$ temperature. The elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa by increasing the temperature from RT to $1,250^{\circ}C$. When compared to the experimental values of the SiC ceramics, the simulation results, which are unable to obtain by experiments, are found to be very useful to predict the stress-strain behaviors and the elastic constant of the ceramics at high temperature.

HIGH TEMPERATURE DEFORMATION BEHAVIOR OF AUSTENITIC STAINLESS STEELS FOR EXHAUST MANIFOLD (Exhaust Manifold 용 오스테나이트계 스테인리스 강의 고온 변형특성)

  • Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.314-317
    • /
    • 2007
  • Domestic automobile industries have been focusing their effort on development of exhaust manifolds using high temperature stainless steel. Exhaust manifolds fabricated with stainless steels can be categorized into tubular and cast ones. The former is usually manufactured by forming and welding process and the latter by vacuum casting process. In the present study, high temperature mechanical properties of 5 austenitic stainless steels, one was sand cast and the others vacuum cast, were investigated by performing a series of high temperature tensile tests and high temperature low cycle fatigue tests.

  • PDF

Effect of softening point of glass frit on the sintering behavior of low-temperature cofitrable glass/ceramic composites (유리 프릿트의 연화점이 저온소성용 글라스/세라믹 복합체의 소결거동에 미치는 영향)

  • 구기덕;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.619-625
    • /
    • 1998
  • The effect of softening point and glass amount of glass frit on the sintering behavior of low temperature cofirable glass/ceramic composites was studied and according to these results, glass/ceramic composites with high sintered density was fabricated. The density of composites was increased as the glass amount was increased. In case of using the glass with low softening point, the deformation of specimen was occurred though the ratio of the glass amount in the specimen was low. But, in case of using the glass with high softening point, the sintered density of composites was increased in accordance with glass amount. With the specimen of high softening point, the deformation was not happened. Therefore, it was found that the densification was progressed continuously in high glass amount. From the study on the effect of softening point of glass on sintering behavior, the suitable softening point and glass amount for fabrication of glass/ceramic composites can be anticipated. When glass frit with softening point of $790^{\circ}C$ was chosen according to this result, low temperature cofirable glass/ceramic composites with high density (97%) at $900^{\circ}C$ was fabricated.

  • PDF

Molecular dynamic studies for elastic constant of SiC crystal at high temperature (고온에서 SiC 결정의 탄성율에 대한 분자동역학연구)

  • Park, B.W.;Shin, H.R.;Kim, J.H.;Im, J.I.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.232-236
    • /
    • 2010
  • Silicon carbide (SiC) ceramics are widely used in the application of high-temperature structural devices due to their light weight as well as superior hardness, fracture toughness, and temperature stability. In this paper, we employed classical molecular dynamics simulations using Tersoff's potential to investigate the elastic constants of the SiC crystal at high temperature. The stress-strain characteristics of the SiC crystal were calculated with the LAMMPS software and the elastic constants of the SiC crystal were analyzed. Based on the stress-strain analysis, the SiC crystal has shown the elastic deformation characteristics at the low temperature region. But the slight plastic deformation behavior was shown as applied the high strain over $1,000^{\circ}C$. Also the elastic constants of the SiC crystal were changed from about 475 GPa to 425 GPa as increased the temperature to $1,250^{\circ}C$.

Constitutive Modeling of AZ31B Magnesium Alloys (AZ31B 마그네슘 합금 판재의 구성식 개발)

  • Lee, M.G.;Chung, K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

Deformation and Failure Behavior during Thermo-Mechanical Fatigue of a Nickel-Based Single Crystal Superalloy (열기계적 피로에 따른 단결정 니켈기 초내열합금의 변형 및 파괴거동)

  • Kang, Jeong Gu;Hong, Hyun Uk;Choi, Baig Gyu;Kim, In Soo;Kang, Nam Hyun;Jo, Chang Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.112-120
    • /
    • 2011
  • The out-of-phase thermo-mechanical fatigue (OP TMF) in a <001> oriented single crystal nickel-based superalloy CMSX-4 has been studied. OP TMF life was less than a half of low cycle fatigue(LCF) life in spite of a small hysteresis loop area of OP TMF compared to that of LCF. The failure was caused by the initiation of a crack at the oxide-layered surface followed by its planar growth along the <100> ${\gamma}$ channel in both LCF and OP TMF. However, deformation twins appeared near the major crack of OP TMF. The multiple groups of parallel twin plates on {111} planes provided a preferential path for crack propagation, which caused a significant decrease in OP TMF life. Additionally, the analysis on the surface crack morphology revealed that the tensile strain at the minimum temperature of OP TMF was found to accelerate the crack propagation.