• 제목/요약/키워드: High Temperature & High Pressure Combustion

검색결과 406건 처리시간 0.026초

가진된 덤프 연소기 내에서의 비예혼합 화염 거동 (Behavior of Non-premixed Flame Front in an Acoustically-Driven Dump Combustor)

  • 박정규;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2000년도 제20회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.142-151
    • /
    • 2000
  • Dump combustor is a combustor having a dump plane to make coherent structures. A non-premixed flame dump combustor of simple geometry was constructed. We conducted basic experiments such as frequency response on the combustor to confirm the characteristics of the phenomena as a typical dump combustion and unsteady combustion. Furthermore we visualized the flame front behavior by CH chemiluminescence and high speed motion analysis. In spite of the lack of another data such as velocity, species concentration and temperature, the results showed not only the periodic motion of flame front but the ignition process of vortex ring flame. Also we could check out Rayleigh criterion by combining the visualization data with the pressure data.

  • PDF

상 변화와 인터페이스 이론을 이용한 고에너지물질의 반응연구 (Study of energetic materials using phase change and interface theory)

  • 김기홍;김학준;김형원;여재익
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년도 제31회 추계학술대회논문집
    • /
    • pp.60-63
    • /
    • 2008
  • 고에너지 물질의 상변화는 연소과정에서 발생하는 필연적으로 중요한 요소이다. 연소과정에서 발생한 고온, 고압의 가스는 주변의 물질과 상호작용을 통해 복잡한 현상을 일으키게 된다. 본 연구에서는 고에너지 물질의 상변화를 해석을 하기 위한 기초 연구로 상변화 변수를 이용하여, 증기 폭발을 해석하였다.

  • PDF

PistonCavity 형상에 따른 충돌분류의 분무거동 (The Behavior of Impinging Spray by Piston Cavity Geometry)

  • 이상석;김근민;김봉곤;정성식;하종률
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.211-219
    • /
    • 1996
  • In a small high-speed D. I. diesel engine, the injected fuel spray into the atmosphere of the high temperature is burnt by go through the process of break up, atomization, evaporation and process of ignition. These process are important to decide the emission control and the rate of fuel consumption and out put of power. Especially, in the case of injected fuel spray impinging on the wall of piston cavity, the geometry of piston cavity gives great influence the ignitability of injected fuel and the flame structure. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, the spray was impinged on the wall of 3 types of piston cavity such as Dish, Toroidal, Re-entrant type, in order to analyze the combustion process of impinging spray precisely and systematically. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation σ(t) and variation factor(vf) was measured with the lapse of time.

  • PDF

Analysis and structural design of various turbine blades under variable conditions: A review

  • Saif, Mohd;Mullick, Parth;Imam, Ashhad
    • Advances in materials Research
    • /
    • 제8권1호
    • /
    • pp.11-24
    • /
    • 2019
  • This paper presents a review study for energy-efficient gas turbines (GTs) with cycles which contributes significantly towards sustainable usage. Nonetheless, these progressive engines, operative at turbine inlet temperatures as high as $1600^{\circ}C$, require the employment of highly creep resistant materials for use in hotter section components of gas turbines like combustion chamber and blades. However, the gas turbine obtain its driving power by utilizing the energy of treated gases and air which is at piercing temperature and pushing by expanding through the several rings of steady and vibratory blades. Since the turbine blades works at very high temperature and pressure, high stress concentration are observed on the blades. With the increasing demand of service, to provide adequate efficiency and power within the optimized level, turbine blades are to be made of those materials which can withstand high thermal and working load condition for longer cycle time. This paper depicts the recent developments in the field of implementing the best suited materials for the GTs, selection of proper Thermal Barrier Coating (TBC), fracture analysis and experiments on failed or used turbine blades and several other designing and operating factors which are effecting the blade life and efficiency. It is revealed that Nickel based Superalloys were promising, Cast Iron with Zirconium and Pt-Al coatings are used as best TBC material, material defects are the foremost and prominent reason for blade failure.

Piston Crevice Hydrocarbon Oxidation During Expansion Process in an SI Engine

  • Kyoungdoug Min;Kim, Sejun
    • Journal of Mechanical Science and Technology
    • /
    • 제17권6호
    • /
    • pp.888-895
    • /
    • 2003
  • Combustion chamber crevices in SI engines are identified as the largest contributors to the engine-out hydrocarbon emissions. The largest crevice is the piston ring-pack crevice. A numerical simulation method was developed, which would allow to predict and understand the oxidation process of piston crevice hydrocarbons. A computational mesh with a moving grid to represent the piston motion was built and a 4-step oxidation model involving seven species was used. The sixteen coefficients in the rate expressions of 4-step oxidation model are optimized based on the results from a study on the detailed chemical kinetic mechanism of oxidation in the engine combustion chamber. Propane was used as the fuel in order to eliminate oil layer absorption and the liquid fuel effect. Initial conditions of the burned gas temperature and in-cylinder pressure were obtained from the 2-zone cycle simulation model. And the simulation was carried out from the end of combustion to the exhaust valve opening for various engine speeds, loads, equivalence ratios and crevice volumes. The total hydrocarbon (THC) oxidation in the crevice during the expansion stroke was 54.9% at 1500 rpm and 0.4 bar (warmed-up condition). The oxidation rate increased at high loads, high swirl ratios, and near stoichiometric conditions. As the crevice volume increased, the amount of unburned HC left at EVO (Exhaust Valve Opening) increased slightly.

스파크점화기관에서 고속응답 FID를 이용한 실린더내 잔류가스량 측정에 관한 연구 (A Study for Measurements of In-Cylinder Residual Gas Fraction using Fast Response FID in an SI Engine)

  • 송해박;조한승;이종화;이귀영
    • 한국자동차공학회논문집
    • /
    • 제6권1호
    • /
    • pp.80-89
    • /
    • 1998
  • The residual gas in an spark-ignition engine is one of important factors on emissions and performance such as combustion stability. With high residual gas fractions, flame speed and maximum combustion temperature are decreased and these are deeply related with combustion stability especially at idle and NOx emission at relatively high engine load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating load. Therefore, there is a need to characterize the residual gas fraction as a function of the engine operating parameters. In the present study, the quantitative measurement technique of residual gas fraction was studied by using Fast Response Flame Ionization Detector(FRFID). The measuring technique and model for estimation of residual gas fraction were reported in this paper. By the assuming that the raw signal from FRFID saturates with the same slope for firing and misfiring cycle, in-cylinder hydrocarbon(HC) concentration can be estimated. Residual gas fraction can be obtained from the in-cylinder HC concentration measured at firing and motoring condition. The developed measurement and calibration procedure were applied to the limited engine operating and design condition such as intake manifold pressure and valve overlap. The results show relevant trends by comparing those from previous studies.

  • PDF

가스엔진과 디젤엔진의 혼합 EGR시스템이 배기배출물에 미치는 영향 (Effects on Exhaust Gas Emission in Combined EGR System of Gas Engine and Diesel Engine)

  • 유동훈;서전수신;임재근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.896-902
    • /
    • 2009
  • EGR is applied in order to lower temperature of combustion chamber by using the specific heat of carbon dioxide in engine exhaust gas. However, the problem of EGR system in diesel engine is high PM concentration. Combined EGR system can be reduced it by mixing exhaust gas of gas engine into the intake air of diesel engine. This experimental study was designed for EGR system for both engines use. The results of EGR experimental study by using diesel engine and gas engine are as follows. 1) The pressure of combustion and rate of heat release decreased. 2) The specific fuel consumption increased. But, up to middle load, it little increased. 3) NO concentration has decreased up to 50% in almost all combustion area. 4) The variation of the PM concentration at low load is not so seen. But at high load, PM increased rapidly when concentration of oxygen is decreased and most of it caused the increasing of Dry Soot.

Erosion Behavior of SiC Coated C/C Composites with Condition of Combustion Test

  • Joo, Hyeok-Jong;Min, Kyung-Dae;Lee, Jae-Won
    • Carbon letters
    • /
    • 제4권3호
    • /
    • pp.133-139
    • /
    • 2003
  • Carbon/carbon composites are ideal candidates for a number of aerospace applications including structural materials for advanced vehicles, leading edges, structures of re-entry and hypersonic vehicles and propulsion systems. One serious defect for such application of the carbon/carbon composites is their poor oxidation resistance in high temperature oxidizing environments. SiC coating was employed to protect the composites from oxidation. It is mechanically and chemically stable under extreme thermal and oxidative environments, provides good adhesion to the substrate, and offers good thermal shock resistance. The SiC layer on the nozzle machined from the carbon/carbon composites was formed by pack-cementation method. Then, erosion characteristic of SiC coated carbon/carbon nozzle was examined by combustion test using a liquid rocket motor. The erosion rates were measured as function of combustion pressure, ratio of oxygen to fuel, combustion time, density of the composites and geometry of reinforced carbon fibre in the composites. The morphology change of the composites after combustion test was investigated using SEM and erosion mechanism also was discussed.

  • PDF

마이크로 터빈 연소기 주연소영역의 저 NOx 생성 특성 (The Low NOx Characteristics of the Primary Zone in Micro Turbine Combustor)

  • 손민규;안국영;이헌석;윤정중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.155-160
    • /
    • 2001
  • The low NOx characteristics have been investigated to develop the combustor for micro turbine. The lean premixed combustion technology was applied to reduce the NOx emission. The test was conducted at the condition of high temperature and ambient pressure. The combustion air which has the temperature of $450\sim650K$ were supplied to the combustor through the air preheater. The temperature and emissions of NOx and CO were measured at the exit of combustor, The exit temperature and NOx were increased and CO was decreased with increasing inlet air temperature. The premixing chamber can be operated very lean condition of equivalence ratio around 0.35. The NOx was decreased with decreasing the equivalence ratio. The CO was decreased with decreasing the equivalence ratio, but the CO was increased with decreasing the equivalence ratio below 0.4. But, at the very lean condition of equivalence ratio below 0.35 both NOx and CO were increased because of the flame unstability. The NOx was decreased and CO was increased with increasing inlet air flowrate. This results can be used to determine the size of combustor. Consequently the performance of combustor shows the possibility of the application to the gas turbine system.

  • PDF

비정상 충돌 분류의 Cavity형상에 따른 공간 농도 분포 및 거동해석 (The Spray Behavior Analysis and Space Distribution of Mixture in Transient Jet Impinging on Piston Cavity)

  • 이상석;김근민;김봉곤;정성식;하종률
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.16-23
    • /
    • 1996
  • In case of a high-speed D.I. diesel engine. the injected fuel spray is unavoidable that the impinging on the wall of piston cavity and in this case the geometry of piston cavity has a great influence on the atomization structure and air flow fields. In the field of combustion and in many other spray applications, there are clear evidence of correlation between spray structure and emission of pollutants. Ordinary, the combustion chamber of driving engine have unsteady turbulent flow be attendant on such as the change of temperature, velocity and pressure. So the analysis of spray behavior is difficult. In this study, a single spray was impinged on each cavity wall at indicated angle in a quiescent atmosphere at room temperature and pressure, as being the simplest case, and 3 types of piston cavity such as Dish, Toroidal and Re-entrant type was tested for analyzing the influence of cavity geometry. And hot wire probe was used for analyze non-steady flow characteristics of impinging spray, and to investigate the behavior of spray, the aspects of concentration c(t), standard deviation $\sigma(t)$ and variation factor (v.f.) was measured with the lapse of time.

  • PDF