• Title/Summary/Keyword: High Temperature & High Pressure Combustion

Search Result 406, Processing Time 0.027 seconds

Numerical Simulation Study on Supersonic Combustion using the Cavity (공동을 이용한 초음속 연소의 수치적 연구)

  • Jeong, Eun-Ju;Jeung, In-Seuck
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.255-260
    • /
    • 2005
  • To achieve efficient combustion within a manageable length, a successful fuel injection scheme must provide rapid mixing between the fuel and airstreams. The aim of the present numerical research is to investigate the flame holding and combustion enhancement. Additional fuel into the cavity prevents shear flow impingement on the trailing edge of the cavity. The high temperature freestream flow mixes with the cold hydrogen fuel that is injected into the cavity and raises the fuel temperature remarkably and become to start combustion. The high pressure in the cavity due to the cavity structure and combustion leads the hydrogen fuel to upstream. The shock in the cavity to be generated by the fuel injection joins together and reflects off the ceiling wall. This makes high pressure and low mach number region and makes a small recirculation in this region. This high stagnation temperature is nearly recovered in the shear layer in front of the cavity and leads to start combustion. In the downstream of the cavity, the wall pressure drops significantly. This means that the combustion phenomenon is diminished. Because fuel lumps at the trailing edge of the cavity then it spreads after the cavity so, in this region there is a strong expansion.

  • PDF

Experimental Study on Microexplosive Burning of Binary Fuel Droplets (이성분 연료 액적 연소에 관한 실험적 연구)

  • Ghassemi, Hojat;Baek, Seung-Wook;Khan, Qasim Sarwar
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.110-119
    • /
    • 2005
  • The combustion characteristics of binary component single droplets hanging at the tip of a quartz fiber are studied experimentally at different environmental pressures and temperatures under normal gravity. Normal Heptane and Normal Hexadecane are selected as two fuels with high difference in boiling temperatures. A falling electrical furnace in a high pressure vessel has provided high temperature environment. Nitrogen and air have formed the environment to study evaporation and combustion, respectively. The initial diameter of droplet was ranging from 1.1 to 1.3 mm. The evaporation and combustion processes were recorded by a high speed digital camera. Some characteristics of droplet burning under different environment conditions and different droplet composition have been investigated. Microexplosion of droplet take places under atmospheric pressure. Bubble formation and its consequent result, incomplete droplet disintegration which presents in all binary compositions, do not appear at high pressure. The initiation of combustion, always takes place in the bottom of droplet due to buoyancy effect of relatively cold fuel vapor. Also, the burning of binary droplet produces soot when the pressure is high.

  • PDF

Numerical Modeling for Vaporization, Auto-Ignition and Combustion Processes of Dimethyl Ether (DME) Fuel Sprays (DME 연료의 증발, 점화 및 분무연소특성 해석)

  • Yu, Yong-Wook;Lee, Jeong-Won;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and combustion processes in high-pressure engine conditions. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model is utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Numerical results indicate that the RIF approach, together with the high-pressure vaporization model, successfully predicts the essential feature of ignition and spray combustion processes.

  • PDF

A Study on Comparisons Between Combustion Temperatures Calculated by Two-Region Model and Measured by Two-Color Method in Premixed Constant-Volume Combustion (정적 예혼합기 연소에 있어서 2영역 모델 및 2색법에 의한 연소온도 비교에 관한 연구)

  • S.K.Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.300-310
    • /
    • 1999
  • A constant-volume combustion chamber is developed to measure the burnt gas temperature over the wide ranges of equivalence ratio from 1.5 to 2.7 and pressure from 0.1 to 2.7 and pressure from 0.1 to 6 MPa by two-color method. The combustion temperature is also calculated by the conventional two-region model. The premixed fuel rich propane-oxygen-inert gas mixtures under high pressures are simultaneously ignited by eight spark plugs located on the circumference of combustion chamber with 45 degree intervals. The eight converging flames compress the end gases to high pressures. The transmissiv-ity in the chamber center during the final stage of combustion at the highest pressure is measured by in situ laser extinction method. Comparisons are made with the combustion temperatures between two-color method and two-region model. It is found that the burnt gas temperature mea-sured by two-color method is higher than that calculated by two-region model because of being the negative temperature gradient on the calculation and the temperature distribution of light path-length on the measurement and the burnt gas temperature for the turbulent combustion is higher than that of the laminar combustion under the same conditions because the heat loss for turbulent combustion is lower due to the shorter combustion period.

  • PDF

Study on Vaporization and Combustion of Spray in High Pressure Environment (고압에서의 분무의 증발 및 연소 현상에 관한 연구)

  • Wang, Tae-Joong;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1273-1281
    • /
    • 2003
  • The present study is mainly motivated to investigate the vaporization, auto-ignition, and combustion of liquid fuel spray injected into high pressure environment. The unsteady, multi-dimensional models were used for realistic simulation of spray as well as prediction of accurate ignition delay time. The Separated Flow (SF) model which considers the finite rate of transport between liquid and gas phases was employed to represent the interactions between spray and gas field. Among the SF models, the Discrete Droplet Model (DDM) which simulates the spray using finite number of representative samples of discrete droplets was adopted. The Eulerian-Lagrangian formulation was used to analyze the two-phase interactions. In order to predict an evaporation rate of droplet in high pressure environment, the high pressure vaporization model was applied using thermodynamic equilibrium and phase equilibrium at droplet surface. The high pressure effect as well as high temperature effect was considered in the calculation of liquid and gas properties. In case of vaporization, an interaction between droplets was studied through the simulation of spray. The interaction is shown up differently whether the ambient gas field is at normal pressure or high pressure. Also, the characteristics of spray behavior in high pressure environment were investigated through the comparison with normal ambient pressure case. In both cases, the spray behaviors are simulated through the distributions of temperature and reaction rate in gas field.

The investigation of Diesel Spray Combustion in DME HCCI (DME 예혼합기를 분위기로 하는 디젤 분무의 연소에 관한 연구)

  • Lim, Ock-Taeck;Iida, Norimasa
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3329-3334
    • /
    • 2007
  • The purpose of the research is to investigate of diesel spray combustion for simultaneously reduce way NOx and PM. The pressure diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured; we estimated it by CHEMKIN calculation. DME HCCI characteristic is surveyed. Validations of the CHEMKIN calculation were confirmed pressure rise of an experiment and pressure rise of a calculation. Using a framing streak camera captured two dimensional spontaneous luminescence images from chemical species at low temperature reaction(LTR) and high temperature reaction (HTR). Also, the combustion events were observed by high-speed direct photography, the ignition and combustion were analyzed by the combustion chamber pressure profiles.

  • PDF

A Study on the Ignition Delay of Fish Oil Using a Constant Volume Combustion Bomb (정용연소장치에 의한 어유의 착화지연에 관한 연구)

  • 서정주;왕우경;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.50-58
    • /
    • 1993
  • The ignition delay of diesel oil and fish oil blended with diesel oils was investigated at various pressure and temperature conditions in a constant volume combustion bomb. The evaporation and combustion duration of diesel oil and fish oil blended with diesel oils were respectively different in high and low temperature. The dependence of ignition delay on the temperature was different in high and low temperature ranges which were divided at the 773K. The dependence of ignition delay on the pressure was almost linear, regardless of the test fuels at the constant temperature(863K). The ignition delay became longer as the blending rate of fish oil increased at the constant temperature and pressure, but it was especially short with 20% fish oil blended with diesel oils.

  • PDF

A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber (정적연소실내의 디젤분무증발과 연소특성에 관한 연구)

  • Kim, S.H.;Kim, S.J.;Lee, M.B.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

A Study on a High-Temperature/High-Pressure Washing System in which High-Temperature Water is Generated in a Low-Pressure Boiler and High-Pressure Water is Generated Thereafter in a Compressor (저압보일러에서 고온의 온수 생성 후 압축기에서 고압수를 생성하는 고온·고압 세척시스템에 관한 연구)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.94-100
    • /
    • 2019
  • This study was conducted on a high-temperature/high-pressure washer in which low-pressure cold water in a boiler is heated to a temperature range of $70{\sim}80^{\circ}C$ by supplying diesel combustion heat. The high-temperature water is sent to a compressor to increase its pressure to 200 bar, thereby making high-temperature/high-pressure water, which is sprayed through a spray nozzle. In the results of this study, the spray temperature of the high-pressure washing was shown to be the highest when the ratio between the actual amount of combustible air and the theoretical amount of air was 1:1 and the energy consumption rate of the low-pressure boiler type high-pressure washer was shown to be much lower than that of the high-pressure boiler type high-pressure washer.

Investigation of Droplet Vaporizatio Phenomena in High Pressure Environments (고압에서의 액적의 증발현상에 관한 연구)

  • Lee, Hyun-Chang;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.3
    • /
    • pp.17-23
    • /
    • 2008
  • The spray combustion and spray cooling depends on droplet evaporation. So, evaporation model for spray has been requested and lots of investigation has been done and various reliable models have been developed also for last few decades. In the present study, One dimensional quasi-steady spherically symmetric droplet evaporation model for micro-gravity is developed. The gas phase was assumed as steady state and the thermophysical properties are calculated as a function of temperature, pressure and composition and the properties used in the model was validated by NIST web data and overall evaporation history results was compared with experimental results by Nomura and Qasim and gave satisfactory agreements. Through this model, diverse phenomenon was investigated, especially regarding the effects of ambient pressure and temperature. The effects of pressure for the droplet evaporation time were studied. The high pressure increased the droplet surface temperature and made effect on the evaporation time depend on atmospheric temperature. The role of the ambient temperature was investigated and explained. The basic investigation for the evaporation process according to variation of droplet diameter and surface temperature were also investigated and the well-known phenomena, like D-square-law, were reported, too.

  • PDF