• 제목/요약/키워드: High Technology

검색결과 48,564건 처리시간 0.066초

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1962-1971
    • /
    • 2022
  • The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

층상계 하이니켈 양극재의 잔류 리튬 생성 및 저감 메커니즘 연구 (A Mechanism Study on Formation and Reduction of Residual Li of High Nickel Cathode for Lithium-ion Batteries)

  • 빈민욱;나범탁;홍태은;김영진
    • 산업기술연구
    • /
    • 제42권1호
    • /
    • pp.7-12
    • /
    • 2022
  • High nickel layered oxide cathodes are gaining increasing attention for lithium-ion batteries due to their higher energy density and lower cost compared to LiCoO2. However, they suffer from the formation of residual lithium on the surface in the form of LiOH and Li2CO3 on exposure to ambient air. The residual lithium causes notorious issues, such as slurry gelation during electrode preparation and gas evolution during cell cycling. In this review, we investigate the residual lithium issues through its impact on cathode slurry instability based on deformed polyvinylidene fluoride (PVdF) as well as its formation and reduction mechanism in terms of inherently off-stoichiometric synthesis of high nickel cathodes. Additionally, new analysis method with anhydrous methanol was introduced to exclude Li+/H+ exchange effect during sample preparation with distilled water. We hope that this review would contribute to encouraging the academic efforts to consider practical aspects and mitigation in global high-energy-density lithium-ion battery manufacturers.

자전연소합성법을 이용한 Cr 분말 제조시 산세조건에 따른 물성평가 (Effect of Acid Leaching Conditions on the Properties of Cr Powder Produced by Self-propagating High-temperature Synthesis)

  • 이용관;조영우;최신영;허성규;주원;박경태;이미혜;심재진
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.233-241
    • /
    • 2023
  • In this study, we evaluated the effects of acid leaching on the properties of Cr powder synthesized using self-propagating high-temperature synthesis (SHS). Cr powder was synthesized from a mixture of Cr2O3 and magnesium (Mg) powders using the SHS Process, and the byproducts after the reaction were removed using acid leaching. The properties of the recovered Cr powder were analyzed via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), particle size analysis (PSA), and oxygen content analysis. The results show that perfect selective leaching of Cr is challenging because of various factors such as incomplete reaction, reaction kinetics, the presence of impurities, and incompatibility between the acid and metal mixture. Therefore, this study provides essential information on the properties under acidic conditions during the production of high-quality Cr powder using a self-propagating high-temperature synthesis method.

HIGH POWER, HIGH BRIGHTNESS PROTON ACCELERATORS

  • Lee, Yong-Yung
    • Nuclear Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.433-446
    • /
    • 2005
  • The development of accelerator science and technology has been accommodating ever increasing demand from scientific community of the beam energy and intensity of proton beams. The use of high-powered proton beams has extended from the traditional application of nuclear and high-energy physics to other applications, including spallation neutron source replacing nuclear reactor, nuclear actinide transmutation, energy amplification reactors. This article attempts to review development of proton accelerator, both linear and circular, and issues related to the proton beam energy, intensity as well as its output power. For related accelerator physics and technical review, one should refer to the recent article in the Reviews of Modem Physics [1]

Effect of Lu3Al5O12:Ce3+ and (Sr,Ca)AlSiN3:Eu2+ Phosphor Content on Glass Conversion Lens for High-Power White LED

  • Lee, Hyo-Sung;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
    • 한국세라믹학회지
    • /
    • 제52권4호
    • /
    • pp.229-233
    • /
    • 2015
  • Currently, the majority of commercial white LEDs are phosphor converted LEDs made of a blue-emitting chip and YAG yellow phosphor dispersed in organic silicone. However, silicone in high-power devices results in long-term performance problems such as reacting with water, color transition, and shrinkage by heat. Additionally, yellow phosphor is not applicable to warm white LEDs that require a low CCT and high CRI. To solve these problems, mixing of green phosphor, red phosphor and glass, which are stable in high temperatures, is common a production method for high-power warm white LEDs. In this study, we fabricated conversion lenses with LUAG green phosphor, SCASN red phosphor and low-softening point glass for high-power warm white LEDs. Conversion lenses can be well controlled through the phosphor content and heat treatment temperature. Therefore, when the green phosphor content was increased, the CRI and luminance efficiency gradually intensified. Moreover, using high heat treatment temperatures, the fabricated conversion lenses had a high CRI and low luminance efficiency. Thus, the fabricated conversion lenses with green and red phosphor below 90 wt% and 10 wt% with a sintering temperature of $500^{\circ}C$ had the best optical properties. The measured values for the CCT, CRI and luminance efficiency were 3200 K, 80, and 85 lm/w.

400 km/h 고속철도 환경소음저감을 위한 선로 변 벽체 상단장치개발에 관한 연구 (A Study on the Device Installed on the Barrier for The Environmental Noise Reduction in 400 km/h High Speed Railway)

  • 장강석;김영찬;서효선;최찬용;박준홍
    • 대한환경공학회지
    • /
    • 제39권12호
    • /
    • pp.679-684
    • /
    • 2017
  • 고속열차의 설계 및 운행기술이 발전하면서 고속철도의 운행속도가 빠르게 증속되고 있다. 반면 증속 시 발생하는 소음으로 인해 고속철도 연변의 주거지역 등에서는 많은 소음문제가 발생하고 있으며, 고속철도 소음에 대한 민원도 지속적인 증가추세에 있다. 향후 고속철도가 원활히 설계속도대로 운행되기 위해서는 고속철도의 방사소음특성에 적합한 소음예측기술 및 저감기술이 개발되어야 한다. 이와 같은 요구에 부합하기 위해, 400 km/h 고속철도 인프라 연구가 수년에 걸쳐 진행되었다. 이 연구를 통해 신뢰성을 갖는 고속철도 소음예측평가 기술이 개발되었고, 현재 소음저감기술의 단점을 극복하기 위한 핵심방음장치가 개발되었다. 본 연구의 궁극적인 목적은 고속철도 환경소음을 줄이기 위해 개발된 선로 변 벽체 상단에 설치되는 상단장치의 소음성능평가 및 풍압안전성 검증에 관한 것이다.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

직접식 금속 쾌속조형 공정을 이용한 고 냉각 특성 사출 성형 금형 개발에 관한 연구 (Investigation into Development of Injection Mould with High Cooling Characteristics Using Direct Metal RP Technology)

  • 안동규;김현우;김형수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.187-190
    • /
    • 2007
  • The objective of this paper is to investigate into the development of injection mould with high cooling characteristics using a direct metal RP technology. In order to manufacture the injection mould with a high cooling rate, three-dimensional conformal cooling channels have been generated in the mould. DMT process, which is one of direct metal RP technologies, has been utilized to directly manufacture the metallic mould with three-dimensional conformal cooling channels. In order to examine the performance of the designed mould, injection molding tests have been carried out. The results of the experiments have been shown that a cooling time and the injection time of the proposed mould are reduced by the factor of five and two times in comparison with the injection mould with linear cooling channels.

  • PDF

진공용 나노스테이지 개발 (Development of Nano Stage for Ultra High Vacuum)

  • 홍원표;강은구;이석우;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.472-477
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modem products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of mastless fabrication. Therefore, the application of focused ion beam(FIB) technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few ${\mu}{\textrm}{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and l0nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about 1$\times$10$^{-5}$ pa. This paper presents the concept of nano stages and the discussion of the material treatment for ultra tush vacuum.

  • PDF

Design Sensitivity in Quasi-One-Dimensional Silicon-Based Photonic Crystalline Waveguides

  • Kinoshita, Takeshi;Shimizu, Akira;Iida, Yukio;Omura, Yasuhisa
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권1호
    • /
    • pp.55-61
    • /
    • 2003
  • This paper describes how the optical properties of a quasi-one-dimensional photonic crystalline waveguide having a periodic air cavity are influenced by various structural parameters; the electromagnetic fields are simulated using the finite-difference time-domain method. The simulations considered four design parameters: cavity size, defect size, lattice constant, and number of cavity. The parameter sensitivity of the photonic bandgap property of the waveguide having air cavities is examined. A couple of significant design guidelines are obtained. We show that the quasi-one-dimensional photonic crystalline waveguide has significant unrealized potential.