• 제목/요약/키워드: High Strength Concrete Column

검색결과 449건 처리시간 0.033초

4각기둥의 단면형상 변형 후 CFS로 보강한 고강도 철근 콘크리트 기둥의 보강효과 및 파괴거동 연구 (Study on Strengthening Effect and Failure Behavior of CFS Strengthened High Strength RC Columns after Cross -sectional Shape Modification)

  • 전경숙;김장호;박석균;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.259-262
    • /
    • 2005
  • Numerous studies showed that safety and serviceability of many concrete infrastructures and buildings built in 1970's have capacity less than their design capacities and thereby require immediate retrofitting. Currently, these aged concrete structure are being repaired using many repair and strengthening methods developed in the past. Therefore, in this study, a repairing and strengthening method for retrofitting high strength concrete columns that can effectively improve the performance of high strength concrete columns is developed. The square high strength concrete column's cross-sectional shape is modified to octagonal shape by attaching precast members on the surface of the column. Then, the octagonal column surface is wrapped using Carbon Fiber Sheets (CFS). The method allowed the maximum usage of confinement effect of externally wrapped CFS, which resulted in improved strength and ductility of repaired high strength concrete columns.

  • PDF

반복하중을 받는 고강도 철근콘크리트 보-기둥 접합부의 휨강성비에 관한 연구 (The Effects of Flexural Strength Ratio on High Strength Beam-Column Joint Subjected to Reversed Cyclic Loads)

  • 이광수;오정근;문정일;권영호;신성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.63-67
    • /
    • 1990
  • The purpose of this study was to investigate the effects of flexural strength ratio(Mr=$\Sigma$Mc/$\Sigma$Mb) with High-Strength Concrete up to 800Kg/$\textrm{cm}^2$. Five specimens were tested under reversed cyclic loadings. The primary variables were flexural strength ratio of the beam-column, compressive strength of concrete and loading patterns. The results showed that the failure at the beam-column joint in case of high strength concrete was severe more than in case of normal strength concrete when flexural strength ratio 1.4. Thus the part for low limit of flexural strength ratio(Mr=1.4) should be revised for high strengthconcrete.

  • PDF

Strength of biaxially loaded high strength reinforced concrete columns

  • Dundar, Cengiz;Tokgoz, Serkan
    • Structural Engineering and Mechanics
    • /
    • 제44권5호
    • /
    • pp.649-661
    • /
    • 2012
  • An experimental research was conducted to investigate the strength of biaxially loaded short and slender reinforced concrete columns with high strength concrete. In the study, square and L-shaped section reinforced concrete columns were constructed and tested to obtain the load-deformation behaviour and strength of columns. The test results of column specimens were analysed with a theoretical method based on the fiber element technique. The theoretical ultimate strength capacities and the test results of column specimens have been compared and discussed in the paper. Besides this, observed failure mode and experimental and theoretical load-lateral deflection behaviour of the column specimens are presented.

고강도 콘크리트를 사용한 보-기둥 접합부의 비 선형 거동에 관한 기초적 연구 (A Fundmental Study of the Inlastic Behavior of High Strength Concrete Beam-Column Joints.)

  • 민정규;박현수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.51-56
    • /
    • 1990
  • Six small-scale reinforced concrete beam-column joint specimens subjected to monotonic and cyclic loading were tested to investigate the effects of strength of concrete. Variables are 1)compressive strength of concrete(f' c=300, 700kg/㎠), 2)shear span to depth ratio (a/d=4.7, 2.0). The major results of this test were: 1)flexural strength of high strength concrete beam-column joint was not affected too much by the compressive strength of concrete, 2) flexural cracks emerge to inside of beam deeply for high strength concrete member.

  • PDF

고강도 콘크리트를 사용한 플랫 플레이트 구조의 기둥·슬래브 접합부 구조성능 (Structural Performance of Column-Slab Connection in Flat Plate System Using High Strength Concrete)

  • 김형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.97-105
    • /
    • 2006
  • 플랫 플레이트 구조에서 고강도 콘크리트를 사용함에 따라서 접합부의 전단강도와 같은 구조성능을 향상시켜서 플랫 플레이트 구조의 단점을 보완하여 장점을 극대화시킬 수 있다고 판단된다. 이에 본 논문에서는 70MPa급 고강도 콘크리트를 사용한 플랫 플레이트구조의 기둥 슬래브 접합부 실험체를 제작한 후에 수직하중과 수평하중의 조합하중을 가력하여 플랫 플레이트구조의 기둥 슬래브 접합부에 대한 전단강도를 비롯한 주요한 구조성능을 평가하고자 한다. 본 연구에서의 실험변수는 슬래브의 철근비와 슬래브에 작용하는 수직하중의 비율로 하였다.

고강도 철근콘크리트 기둥의 파괴거동에 관한 실험적 연구 (An Experimental Study on Failure Modes of High Strength Reinforced Concrete Columns)

  • 최창익;박동규;손혁수;김준범;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.442-445
    • /
    • 1997
  • With increasing use of high strength concrete tied columns in structural engineering, it becomes necessary to examine the applicability of related sections of current design codes. High strength concrete has an advantage of strength capacity and stiffness especially for column elements. This paper presents an experimental study of high strength concrete tied columns subjected to eccentric loading. The main variables included in this test were concrete compressive strength, steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 34.9Mpa(356kg/$\textrm{cm}^2$ ) to 93.2Mpa(951kg/$\textrm{cm}^2$ ) and the longitudinal steel ratios were between 1.1% and 5.5%. The eccentricity was selected for the different failure modes, i.e., compression control, balanced point, and tension control. The slenderness ratio varied from 19 to 61. The column specimens with same slenderness ratio but with different concrete compressive strength were constructed and tested. The purpose of this paper is to show failure modes of high strength reinforced concrete columns.

  • PDF

슬래브가 있는 고강도 철근 콘크리트 넓은 보-기둥 접합부의 거동 (Behavior of High Strength Reinforced Concrete Wide Beam-Column Joint with Slab)

  • 최종인;안종문;신성우;박성식;이범식;양지수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.493-498
    • /
    • 2002
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete( $f_{ck}$ =240, 500kgf/c $m^2$), the ratio of the column-to-beam flexural capacity( $M_{r}$=2$\Sigma$ $M_{c}$$\Sigma$ $M_{b}$ ; 0.77-2.26), extended length of the column concrete($\ell$$_{d}$ ; 0, 9.6, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied the required minimum ductile capacity according to increase the compressive strength, (2). In the design of the wide beam-column joints, one should be consider the effects of slab stiffness which is ignored in the current design code and practice.ice.e.e.

  • PDF

Nonlinear Finite Element Analysis on the Transmission of Column Loads through Slab-Column Connections

  • 윤영수;이주하;손유신;이승훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.466-469
    • /
    • 2006
  • This paper presents the structural characteristics of slab-column connections by using nonlinear finite element analysis. FEA considering material non-linearity was performed to investigate average column strain, failure mode, principal stress distribution, and steel yielding conditions for various slab-column members. In addition, to investigate alternative methods for improving the strength of interior column-slab joints, some specimens were provided with different reinforcing types of high-strength concrete puddling, high-strength column longitudinal steels, dowel bars, and high-strength concrete core. To make certain of the reliability of the analytical program, analysis results for concrete material model developed and two specimens with and without puddling were compared with experimental results. It was found that providing the alternative reinforcing methods in the slab-column joint results in a significant improvement in performance. This includes an increase in the axial compressive strength, greater loading stiffness, and ductility.

  • PDF

Capacity and the moment-curvature relationship of high-strength concrete filled steel tube columns under eccentric loads

  • Lee, Seung-Jo
    • Steel and Composite Structures
    • /
    • 제7권2호
    • /
    • pp.135-160
    • /
    • 2007
  • Recently, CFT column has been well-studied and reported on, because a CFT column has certain superior structural properties as well as good productivity, execution efficiency, and improved rigidity over existing columns. However, CFT column still has problems clearing the capacity evaluation between its steel tube member and high-strength concrete materials. Also, research on concrete has examined numerical values for high-strength concrete filled steel square tube columns (HCFT) to explain transformation performance (M-${\phi}$) when a short-column receives equal flexure-moment from axial stress. Moment-curvature formulas are proposed for HCFT columns based on analytic assumption described in this paper. This study investigated structural properties (capacity, curvature), through a series of experiments for HCFT with key parameters, such as strength of concrete mixed design (58.8 MPa), width-thickness ratio (D/t), buckling length to sectional width ratio (Lk/D) and concrete types (Zeolite, Fly-ash, Silica-fume) under eccentric loads. A comparative analysis executed for the AISC-LRFD, AIJ and Takanori Sato, etc. Design formulas to estimate the axial load (N)-moment (M)-curvature (${\phi}$) are proposed for HCFT columns based on tests results described in this paper.

고강도 철근 및 고강도 콘크리트를 사용한 보-기둥 접합부의 연성거동 (Ductile Behavior of High Strength Reinforced Concrete Beam-Column Joint)

  • 이정한;유영찬;이원호;정헌수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.537-540
    • /
    • 1999
  • The primary objective of this study is to make a contribution to the construction of 40~60 story R/C high rise building by developing the reinforcing details which can improve the seismic performance of high-strength (f'c=700kg/$\textrm{cm}^2$, fy=4000, 8000kg/$\textrm{cm}^2$) R/C beam-column joints. And the purpose of this study is to investigate experimentally the effect of load history on the total energy dissipation capacity of reinforced concrete flexural members. The reinforcing details which can make beam plastic hinging zones moved and spreaded from the column face is proposed to insure the ductile behavior of high-strength RC beam-column joints. The intermediate reinforcement which is horizontally anchored by interlinking each intermediate reinforcements is proposed and tested to examine the mechanical performance of proposed details. Main variables are the shape of the intermediate reinforcements and yield strength of rebars. From the test results, the newly proposed intermediate reinforcement details can move and spread the beam plastic hinging zone about 1.0d from the column face.

  • PDF