• Title/Summary/Keyword: High Speed switched reluctance motor(SRM)

Search Result 132, Processing Time 0.025 seconds

Speed Sensorless Control of Switched Reluctance Motor (스위치드 리럭턴스 전동기의 센서리스 속도제어)

  • Shin, Kyoo-Jae;Kwon, Young-Ahn
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.166-172
    • /
    • 1998
  • Switched reluctance motor(SRM) has the advantages of simple structure, low rotor inertia and high efficiency. However, position sensor is essential in SRM in order to synchronize the phase excitation to the rotor Position. The Position sensors increase the cost of drive system and tend to reduce system reliability. This paper investigates the speed control of sensorless SRM in which the Phase current and change rate are utilized in position decision, and the period of dwell angle is variable for speed control. The proposed system consists of Position decision circuit, speed controller, digital logic commutator, switching angle controller and inverter The performances in the proposed system are verified through the experiment.

  • PDF

A Control Strategy for Switched Reluctance Motor with High Sspeed Operation (고속에서의 스위치드 리럭턴스 모터의 제어 기법)

  • 유준석;이태규;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.370-376
    • /
    • 1993
  • In this paper, we present the voltage source algorithm for high speed and low torque ripple operation of a switched reluctance motor (SRM). The SRM has simpler structure than the traditional dc or ac motor. It has a high starting torque and can be operated in the wide range of speed. So it can be applied to various areas. But the SRM has some difficulties in driving circuit and controller due to the large inductance variations. In this study, in order to produce the low torque ripple and the high speed operation, a voltage source algorithm is proposed. We showed the good performance of the proposed controller through simulation and experiment.

  • PDF

Automatic Turn-off Angle Control for High Speed SRM Drives

  • Nashed Maged N.F.;Ohyama Kazuhiro;Aso Kenichi;Fujii Hiroaki;Uehara Hitoshi
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents a new approach to the automatic control of the turn-off angle used to excite the Switched Reluctance Motor (SRM) employed in electric vehicles (EV). The controller selects the turn-off angle that supports and improves the performance of the motor drive system. This control scheme consisting of classical current control and speed control depends on a lookup table to take the best result of the motor. The turn-on angle of the main switches of the inverter is fixed at $0^{\circ}C$ and the turn-off angle is variable depending on the reference speed. The motor, inverter and control system are modeled in Simulink to demonstrate the operation of the system.

Performance of High-Speed 4/2 Switched Reluctance Motor

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.640-646
    • /
    • 2011
  • The current study presents the design and performance of a novel 4/2 switched reluctance motor (SRM) for a high-speed air blower. With a comparative study of some rotor structures for a high-speed drive, a stepper-type rotor is optimized to produce a continuous torque and a low torque ripple. Rotor pole arc is modified to have a wide continuous output torque region, and air gap is determined to develop less torque ripple. The rotor radius is determined to reduce torque ripple with a reiterative FEM analysis. The designed rotor has three regions: short uniform, long uniform, and nonuniform air-gap region. The positive torque region is wider than a conventional 4/2 SRM without any torque dead zone. A prototype is tested and the efficiency is up to 72[%] at 30,000[rpm], 600[w] output.

Characteristic Analysis and Design of a Single Phase Switched Reluctance Motor for High Speed Application

  • Kim, Youn-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.3
    • /
    • pp.114-121
    • /
    • 2004
  • Switched reluctance motors have received much attention as a driving means for various industrial applications because they have simple construction, low cost and high efficiency. Nevertheless, the requirements of drive converters make it difficult to lower the overall system cost as compared with the DC motor application. Single phase switched reluctance motors (SPSRMs) provide a solution to the high cost problem since the number of switching power devices can be reduced and consequently the trials for application are increased. However, research involving SPSRMs, especially in the area of design work, is insufficient. This paper introduces a novel design methodology of single phase SRM. The design work for SPSRM comprises the determination of many variables such as stator and rotor pole arc as well as on, off and so on. Managing all variable combinations leads to lengthy computation time and a fault in the design process. For that reason, a reliable technique and brief procedure term are required in SPSRM design.

Design and Operation Characteristics of Novel 2-Phase 6/5 Switched Reluctance Motor

  • Hieu, Pham Trung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2194-2200
    • /
    • 2014
  • This paper presents a design of novel 2-phase 6/5 switched reluctance motor (SRM) for an air-blower application. This type of motor is suitable for the applications that require high speed and only one directional rotation as air-blower. The desired air-blower is unidirectional application, and requires a wide positive torque region without torque dead-zone. In order to get a wide positive torque region without torque dead-zone during phase commutation, asymmetric inductance characteristic with non-uniform air-gap is considered. The proposed motor can be operated at any rotor position. The proposed 6/5 SRM uses short flux path technique that achieved by means of winding configuration and lamination geometry. The purpose of short flux path is to reduce the core loss and the absorption MMF in the stator. The proposed 2-phase 6/5 SRM is verified by finite element method (FEM) analysis and Matlab-Simulink. In order to verify the design, a prototype of the proposed motor was manufactured for practical system.

Degign and Drive Characteristics of High Speed SRM (고속 SRM의 설계 및 구동특성)

  • Liang, Jianing;Kim, Tae-Hyoung;Ahn, Jin-Woo;Ahn, Young-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1138-1140
    • /
    • 2005
  • This paper presents dynamic characteristics of super high speed SRM and it's drive. The nonlinear model of super high speed SRM is implement by Matlab/simulink and the simulation results show that the prototypeSRM can operate up 20,000[rpm]with stable performance.

  • PDF

The Study for Power Factor Correction and High Efficiency of Switched Reluctance Motor Drive System (스위치드 릴럭턴스 전동기를 위한 구동시스템의 역률개선과 고효율에 관한 연구)

  • Han Dae-Hee;Choi Jun-Hyuk;Yoon Yong-Ho;Jeong Dong-Hyo;Kim Do-Gun;Won Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.11-15
    • /
    • 2002
  • Switched Reluctance Motor (SRM) offers the advantages of simple and robust motor construction, high speeds and high efficiencies over a wide operating range of torque and speed, excellent controllability. However, SRM has the disadvantages of high current harmonics, and low power factor because of a capacitor filter is inserted in the power converter and inductance of SRM is high, it has pulse waveform of current. This paper deals with an energy efficient converter fed SRM system with the reduced harmonics and improved power factor and with higher efficiency. The validity of the proposed scheme is verified via experiment. We are implemented the proposed control system using 80C196KC micro-controller.

  • PDF

The Control of Switched Reluctance Motor Using MRAS without Speed and Position Sensors (MRAS 관측기를 이용한 SRM의 속도 및 위치센서없는 제어)

  • Yang, Lee-U;Kim, Jin-Su;Kim, Yeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.632-639
    • /
    • 1999
  • SRM(Switched Reluctance Motor) drives require the accurate position and speed information of the rotor. These informations are generally provided by a shaft encoder or resolver. High temperature, EMI, and dust may make detection performance deteriorate. Therefore, the elimination of the position and speed sensor is desirable. In this paper, a nonlinear adaptive observer using the MRAS(Model Reference Adaptive System) is proposed. The rotor speed and position are estimated by the adaptation law using the real and estimated currents. The stability of the adaptive observer is proved by Lyapunov stability theory. The proposed methods are implemented with TMS320C31 DSP. Experimental results prove that the observer has a good estimation performance of the rotor speed and position despite of the parameter variations and loads, and the speed control can be accomplished in the wide speed range.

  • PDF

High Speed Segmental Stator Type 4/3 SRM: Design, Analysis, and Experimental Verification

  • Hieu, Pham Trung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1864-1871
    • /
    • 2017
  • This paper presents a design of a 2-phase segmental stator type 4/3 switched reluctance motor (SRM) for air-blower application. The air-blower requires only one direction rotation, high rotor speed without torque dead-zone. In order to satisfy the requirements of the load, the rotor of the 4/3 proposed SRM is designed with wider rotor pole arc and non-uniform air-gap is applied on the rotor shape. With a special rotor structure, the motor generates a wider positive torque region and has no torque dead-zone. The stator of the proposed SRM is constructed with two segmental C-cores, and there are no magnetic connections between 2 C-cores. The flux follows in a short closed loop in each C-core and has no reversal flux in the stator. The static and dynamic characteristics of the proposed motor are analyzed by the finite element method (FEA) and Matlab-Simulink, respectively. In order to verify the design, a prototype of the proposed motor has manufactured for laboratory test. The performance of the proposed motor is verified by the simulation and experimental results.