• Title/Summary/Keyword: High Speed Steel (HSS)

Search Result 34, Processing Time 0.019 seconds

Nucleation and Growth Mechanism of Sticking Phenomenon in Ferritic Stainless Steel (페라이트계 스테인레스강의 STICKING 발생 및 성장기구)

  • Jin, W.;Choi, J.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.373-382
    • /
    • 1999
  • Nucleation and growth process of sticking particle in ferritic stainless steels was investigated using a two disk type hot rolling simulator. The sticking behavior was strongly dependent on the surface roughness of a high speed steel roll(HSS) and the oxidation resistance of the ferritic stainless steels. A hot rolling condition with the lower oxidation resistance of the stainless steel and the higher surface roughness of HSS roll was more sensitive to sticking occurrence. It was also illucidated that the initial sticking particles were nucleated at the scratches formed on the roll surface and were served as the sticking growth sites. As rolling proceeded, the sticking particles grew sites. As rolling proceeded, the sticking particles grew by the process that the previous sticking particles provided the sticking growth sites.

  • PDF

Processing and Mechanical Properties of Mullite Fiber / Fe Composite

  • Niibo, Yoshihide;Yuchi, Kazuhiro;Sameshima, Soichiro;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.195-214
    • /
    • 2000
  • The high-speed steel (shorten as HSS) consists of Fe and several kinds of transition metal carbides. The cutting tools or wear-resistant materials made from HSS experience relatively high thermal shock because a coolant such as water or oil is flowed over the surface of heated HSS. The purpose of this research is to increase the hardness, strength, fracture toughness and thermal shock resistance of HSS. A possible strategy is to incorporate a hard ceramic material with high strength in HSS matrix. This paper describes the processing, microstructure and mechanical properties of the oriented unidirectional mullite fiber/HSS composite. The unidirectional mullite fibers of 10${\mu}{\textrm}{m}$ diameter were dispersed by the ultrasonic irradiation of 38 kHz in an ethylenglycol suspension containing HSS powder of 11${\mu}{\textrm}{m}$ median size. The dried green composites with 4-68 vol% fibers were hot-pressed for 2h at 100$0^{\circ}C$ in Ar atmosphere under a pressure of 39 MPa. The higher density was achieved in the composite with a lower content of fibers. The oriented unidirectional fibers were well dispersed in the HSS matrix. The average distance between the center of fibers in the cross section was close to the value calculated from the fiber fraction. No reaction occurred at the interfaces between HSS and mullite fibers in the composites. The composite with 13.6 vol% fibers showed 100 MPa of four point flexural strength at room temperature. The thermal expansion of composite with heating was influenced by the orientation of mullite fibers.

  • PDF

Enhancenent of Wear Resistance of TiN Coated High Speed Steel Tools through Improving some Coating Processes (코팅공정 개선에 의한 TiN코팅 고속도강 공구의 내마모특성 향상)

  • Lee, Y.M.;Son, Y.H.;Kim, H.S.;Back, J.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.32-37
    • /
    • 1996
  • Using the are ion plating(AIP) process, TiN coating was deposited onto high speed steel substrates. The effects of coating thickness, titanisum interlayer and shield on wear resisting capability of the coated tools were investigated. In order to promote good adhesion between the substrate and the TiN coating a thin Ti interlayer was deposited. A shield was set up also between Ti target and high speed steel substrates to prevent molten droplets from reaching the substrate. Three series of varying thickness of TiN coated layer were prepared with or without the Ti interlayer, and with or without the shield. The tools with the Ti layer and the shield showed longer tool lifes than those of other series of tools and the commercially available TiN coated HSS tools, by up to 70%.

  • PDF

A Study on fatigue Strength in the Friction Welded Joints of HSS-Co to SM55C Carbon Steel(I) (HSS-Co와 SM55C 이종 마찰용접재의 피로강도에 관한 연구(1))

  • 서창민;서덕영;이동재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.918-928
    • /
    • 1995
  • This paper deals with the various mechanical properties and fatigue strength in the FRW1 (friction welded interface) of high speed steel (HSS-Co) to SM55C through the tensile test, hardness test and fatigue test. The data of FRW specimens are also compared with those of the base materials (HSS-Co and SM55C steel). Three kinds of specimens used in this study are the friction welded joints, HSS-Co and SM55C carbon steel with circumferential notch, saw notch and smooth, respectively. It is confirmed that the applied welding conditions are optimum methods in order to minimize the heat affected zone (HAZ) and hardness distribution at the HAZ. The fatigue strengths at N = 10$^{6}$ cycles of smooth, circumferential notch and saw notch specimens in the FRW joints are about 299.2 MPa, 123.8 MPa and 247.5 MPA, respectively. The fatigue strength of the friction welded joints is almost equal to that of the SM55C carbon steel in the optimum welding conditions. The fatigue cracks initiated at the welded zone are propagated along the side of SM55C steel.

The Effects of Cobait on Wear and Friction Characteristics of PM-HSS (분말고속도공구강의 마찰마모특성에 미치는 Co의 영향)

  • 이한영;백금주;김용진;배종수;홍성현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.108-114
    • /
    • 1998
  • The mechanical characteristics of the high speed steel by powder metallurgy process(PM-HSS) has been reported to improve with several alloying constituents, such as high carbon, vanadium and cobalt. In this paper, sliding wear test has been conducted using a pin-on-disc machine for three PM-HSS which contains 0%, 5% and 12% cobalt respectively, in order to evaluate the effect of cobalt on wear properties of PM-HSS. The results of this study showed that the wear resistance of PM-HSS has been increased by the addition of cobalt on the range of experimental friction velocities. When compared with the effect of addition of cobalt, the wear resistance of PM-HSS with 5% cobalt has been found to be superior to that of PM-HSS with 12% cobalt.

  • PDF

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

The Evaluation of PVD Coated HSS Endmill (HSS엔드밀의 PVD코팅 및 성능평가)

  • Lee, Sang-Seog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.16 no.4
    • /
    • pp.119-125
    • /
    • 2013
  • To enhance the cutting performance of high speed steel(HSS) endmill, single and multilayer coating is applied on the substrated of the HSS endmill. Coating material reduces cutting force and enhances resistance against abrasive wear. This paper presents the physical vapour deposition(PVD) coating technology and evaluate the PVD coated HSS endmill. The performance of coated HSS endmills are fifteen times better than uncoated HSS endmill on proposed cutting conditions. The TiAlN monolayer coated endmills(futura nano coating) are better than those of multilayer coated endmills(futura coating) on machined surface and tool wear.

A Study on Fatigue Strength in the Friction Welded Joints of HSS-Co to SM55C Carbon Steel(II) (HSS-Co와 SM55C 이종 마찰용접재의 피로강도에 관한 연구(2))

  • 서창민;서덕영;이동재
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.929-940
    • /
    • 1995
  • The fatigue strength and fracture topography in the friction welded interface of high speed steel (HSS-Co) to SM55C carbon steel have been investigated through the fatigue test, SEM fractograph and EDS (energy dispersive spectrometer) analysis. Three kinds of specimens used in this research are the friction welded joints, HSS-Co and SM55C carbon steel with circumferential notch, saw notch and smooth, respectively. The notch sensitivity factor, .eta. of the friction welded joints is lower than that of the base materials, and that represents a superiority of the joint performance of FRW. Fracture topography of the FRW specimens with a notch showed a cleavage or brittle appearance, while that of the FRW smooth specimen appeared to be ductile. Furthermore, although fatigue crack likely initiated near the weld interface of the FRW smooth specimen, crack propagation continued into the HAZ of SM55C steel. Finally, fatigue fractures of the base materials were associated primarily with the inclusions located at the outer periphery of the specimen.

A Study on the Tubular Alumina Liner Subjected to High Pressure and High Temperature (고온 고압용 튜브형 알루미나 라이너에 관한 연구)

  • Oh, Je-Hoon;Lee, Dai-Gil;Lee, Su-Jeong;Lee, Jong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.884-895
    • /
    • 1997
  • The finite element analysis for the tubular alumina liner which was shrink-fitted into a heat treated high speed steel (HSS) sleeve and subjected to high inner pressure and high temperature was performed. The parameters for the analysis were the interference between the alumina and the HSS, the temperature, the inner pressure, the coefficient of friction between the alumina and the HSS, and the taper at the sleeve ends. From the analysis, it was found that the tensile hoop stresses were decreased when the end parts of the HSS sleeve were tapered and the tensile stresses were decreased as the coefficient of friction between the alumina and the HSS was decreased. Also it was found that the alumina might be used as the structural liner for high pressure and high temperature when it was shrink-fitted into a heat treated HSS sleeve.

Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls (고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향)

  • Ha, Dae Jin;Sung, Hyo Kyung;Park, Joon Wook;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.