• Title/Summary/Keyword: High Speed Motor

Search Result 1,904, Processing Time 0.044 seconds

Noise Prediction of Korea High Speed Train (KHST) and Specification of Sub-components (한국형 고속전철 차량소음 예측 및 부품 소음관리방안)

  • ;;;H.W. Thrane
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.917-923
    • /
    • 2002
  • KITECH and ODS performed a study of internal and external noise prediction of the KHST test train. The object of this study was 3 kind of cars; trailer car(TT2), motorized car(TM1) and power car(TP1) and the predicted noise was calculated for the two different driving speeds in free field and tunnel conditions. Data of carbody design and noise sources were delivered from each manufactures. Some of noise sources which were not available in project team, were chosen by experiences of ODS. Internal noise level of each car were predicted for two cases i.e, at 300 km/h and 350 km/h. In addition sound transmission path and dominant noise sources were also investigated of each section of car, which is circular shell typed part of whole carbody. In case of TT2, the dominating sound transmission path is floor in terms or structure-borne noise and air-borne noise. The main noise sources are structure-borne noise from the yaw-damper and air-borne noise from the wheel/rail contact, whereas the dominating sound transmission path of TM1 are floor and sidewall below the window in terms of structure-borne noise. The main noise sources of TM1 are structure-borne noise from motor/gear unit and the yaw-damper in the free field, and air-borne noise from the wheel/rail contact and structure-borne noise from motor/gear unit in the tunnel. Through the external noise prediction for the KHST test train formation, the noise form the wheel/rail contact is estimated as one of the major sources. In addition, the noise specification of sub-component was proposed for managing each sub-surpplier to reach the KHST noise requirement. The specification provide the sound power of machinery part and transmission loss of component of carbody structure. The predicted noise level in each case exceeded the required limit. Through this study, the noise characteristics of the test train were investigated by simulation, and then the actual test will be performed in near future. Both measured and calculated data will be compared and further work for noise reduction will be continued.

  • PDF

Effects of Phenolic and Phosphite Antioxidants on the properties for PC/ABS Blends during High-Shear-Rate Processing (고속 전단 가공에서 페놀계와 인산계 산화방지제에 의한 PC/ABS 블렌드의 물성 변화 연구)

  • Lee, Han Ki;Kim, Seon Hong;Lee, Hyung Il;Yoo, Jae Jung;Yong, Da Kyoung;Choi, Seok Jin;Lee, Seung Goo;Lee, Kee Yoon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.266-271
    • /
    • 2014
  • The effects of antioxidants on the properties of Polycarbonate/Acrylonitrile-Butadiene-Styrene(PC/ABS) blends were studied for the functions of the screw speed and loaded duration of high shear rate processing in order to investigate the degradation for PC/ABS blends. Tris-(2,4-di-tert-butyl-phenyl phosphate) (A1) and Bis(2,4-dicumylphenyl) pentaerythritol diphosphite (A3) as phosphite antioxidants and Octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate (A2) as a phenolic antioxidant are used. The thermal properties were detected by TGA and severely decreased, after the processing. The stress-induced and thermal degradation for PC/ABS blends with the antioxidant A3 was retarded better than the others. By using UTM, the mechanical properties also showed individually decreased according to the antioxidants, after the processing, especially, the elongations showed considerable decline behaviors, while the tensile strengths of PC/ABS blends changed very little. For example, in the operating conditions of 1000rpm of screw speed and 20 seconds of loaded period, the elongations decreased from 148% before the processing, to 91.6% with the A1, to 63% with the A2 and to 131% with the A3 after the processing, respectively. In order to get the morphological properties, the size distributions of the dispersed phases for PC/ABS were investigated by SEM analysis and tended to decrease, as the screw speed and loaded period of the processing increased. Therefore, we confirmed that the antioxidant A3 was the best of all of three to inhibit the stress-induced degradation of PC/ABS blends during the high shear rate processing.

Investigation of Development of Bumper Back-Beam Using a Thermoplastic Polyolefin (열가소성 폴리올레핀으로 구성된 범퍼 후방 보 개발에 관한 연구)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Park, Gun-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.896-905
    • /
    • 2012
  • Recently, the application of the plastic material to automotive components and structures has steadily increased to satisfy demands on the saving of overall weight and the improvement of energy efficiency. The objective of this paper is to investigate the development of a bumper back-beam using a thermoplastic olefin (TPO). The bumper back-beam was designed to be manufactured from the injection molding process. In order to obtain a proper design of the bumper back-beam, three-dimensional finite element analyses were performed for various design alternatives. Stress-strain curves for different strain rates were measured by high speed tensile tests of the TPO to consider strain rate effects in the FEA. The influence of the sectional shape and the rib formation on the contact force-intrusion curves, the deflection and the energy absorption rate of the bumper back-beam was examined. From the results of the examination, a proper design of the bumper back-beam was acquired. The bumper back-beam consisting of TPO was fabricated from the injection moulding process and the vibration welding. Pendulum crash tests were carried out using the fabricated bumper back-beam. The results of the tests showed that the designed bumper back-beam can satisfy requirements of the federal motor vehicle safety standard (FMVSS). Through the comparison of the previously designed bumper back-beam with the newly designed bumper back beam, it was noted that the weight of the designed bumper back-beam is lighter than that of the previously designed bumper back beam by nearly 16 %. In addition, it was considered that the newly designed bumper back beam can improve recycling of the bumper back-beam.

Maximum Torque Operation of SRM by using a Self-tuning Control Method (SRM의 최대 토크 운전을 위한 자기동조 제어)

  • 서종윤;김광헌;장도현
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.240-245
    • /
    • 2004
  • This paper presents a Switched Reluctance Motor(SRM) drive using the self-tuning control method to achieve the maximum torque. SRM has the difficulty to research it by an analytic method and to control the speed End torque because of the high nonlinearity. So, in this paper, the self-tuning control method is applied to relevantly controlling turn-on/off angle to operate at the maximum torque. Also, the feedback signals to control the turn-on/off angle are the encoder pulse and the increment of phase current. At first, n adequate turn-off angle is searched by itself and then a turn-on angle is done. As the relationship between turn-on and him-off angle is mutual dependent, the turn-on/off angle is controlled by a real time self-tuning control method in order to maintain the maximum torque. The proposed self-tuning Algorithm is verified by experiments.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Development of Coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone (드론용 동축 프로펠러 시험장치 개발 및 제자리비행 성능특성에 대한 실험적 연구)

  • Song, Youn-Ha;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • In this paper, the test facility for coaxial propellers at low Reynolds developed and validated by measured data. The test equipment was designed to measure the hovering performance of propellers according to distances between the upper/lower propellers. Thrust, torque, rotational speed, vibration, and amperage of upper and lower propellers can be measured separately. The data acquisition system was built to collect signals of sensors, and LabVIEW software was used to control the motor and collect the signal. The hover performance tests of single propellers were preceded for the facility validation, and then the performance values of coaxial propellers were measured according to distances and diameter differences between the upper/lower propellers. The results showed that the high efficiency is achieved at 20%~30% distance between the upper propeller and lower one. The configuration that the upper propeller has shorter diameter than the lower one has the highest efficiency than other configuration.

Evaluation of an Air-jet and Roller Type Corn-husker (공기분사 및 회전 롤러를 이용한 옥수수 포엽 제거장치의 시험)

  • Park, Hoe-Man;Cho, Kwang-Hwan;Hong, Seong-Gi;Lee, Sun-Ho
    • Journal of Biosystems Engineering
    • /
    • v.35 no.3
    • /
    • pp.163-168
    • /
    • 2010
  • With income growth and "well-being" trends, sales of corn has been increased recently. Corns are processed at processing facilities on the main production site. Corn processing steps include removing bract, steaming, vacuum packing, and storing. To replace manual corn bract removing, some bract removing machines were imported and used. However, the machines were abandoned shortly, because of high damaging ratio of corns. In this research, factors of successful bract removing was studied with rotating rollers and air-injection nozzles to develop corn bract removing system. The test device was composed of a cylindrical roller, an air spray nozzle, a regulator, and a motor. Designing factors were roller type, diameter of air spraying nozzle, spraying angle, and spraying pressure. The measured factors were bract removing rate and damaging rate. It was found that optimum cylindrical roller surface shape was cylindrical roller and linear grove roller. This roller shape produced lowest damaging rate. Test results of the efficacy of preprocessing showed that the air spraying after preprocessing produced highest performance. The rotational speed and inclination of the roller didn't affect the bract removing performance. Optimum injection angle of the air jet nozzle was $70^{\circ}$. To increase bract removing rate and to reduce corn damage, required injection pressure and injection nozzle diameter were decided to less than 0.4 MPa and 2.5 mm, respectively. More than 3 times of nozzle passing produced good bract removing performance and there were no significant difference between the number of passing times.

Effects of Water Amount in Refrigerant on Cooling Performance of Vehicle Air Conditioner (냉매 내 수분의 혼입량이 차량 에어컨의 냉각성능에 미치는 영향)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.36 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • This study was conducted to figure out the diagnosis basis of cooling performance depending on water amount in the refrigerant of air conditioner, which can be estimated by the temperatures and pressures along the refrigerant circulation line. A car air conditioner of SONATA III (Hyundai motor Co., Korea) was tested at maximum cooling condition at the engine speed of 1500 rpm in the room controlled at 33~$35^{\circ}C$ air temperature and 55~57% relative humidity conditionally. Measured variables were temperature differences between inlet and outlet pipe surfaces of the compressor, condenser, receive drier and evaporator; and high pressure and low pressure in the refrigerant circulation line; and temperature difference between inlet and outlet air of the cooling vent of evaporator. In this study, changes of the water amount in the refrigerant were correlated to the temperatures and pressure changes and also water amount caused poor cooling performance. As water amount increased in the refrigerant in the air conditioner, the performance of the cooling or the heat transfer became worse. Temporal variations of the surface temperature of the evaporator outlet pipe and the low-side pressure showed various patterns that could estimate the water amount. When the water amount caused bad cooling performance, the patterns of the temperature of the evaporator outlet pipe indicated irregular fluctuation greater than $5^{\circ}C$. When the diagnosis system is using just external sensors of the low-side pressure and the temperatures of inlet and outlet air of cooling vent of the evaporator, the precise pattern of bad cooling performance caused by excess water amount in the cooling line was irregular pressure fluctuation, 25 kPa under 120 kPa, and temperature, $12^{\circ}C$ and less.

Cooling Performance Deficiency of Air Conditioning System According to Air Quantity Included in Refrigerant (냉매 내 공기혼입에 따른 에어컨 시스템의 냉각성능 저하)

  • Moon, Seong-Won;Min, Young-Bong;Chung, Tae-Sang
    • Journal of Biosystems Engineering
    • /
    • v.34 no.6
    • /
    • pp.470-475
    • /
    • 2009
  • This study was performed to present the diagnosis basis of cooling performance deficiency according to air quantity included in refrigerant of air-conditioner by detecting the temperatures and pressures of refrigerant pipeline. The car air-conditioner of SONATA III (Hyundai motor Co., Korea) was tested by maximum cooling condition at 1500 rpm of engine speed in the room with controlled air condition at $33\sim35^{\circ}C$ and 55~57% RH. Measured variables were temperature differences between inlet and outlet pipe surface of the compressor (Tcom), condenser (Tcon), receive dryer (Trec) and evaporator (Teva), and high pressure (HP) and low pressure (LP) in the refrigerant pipeline, and temperature difference (Tcoo) between inlet and outlet air of the cooling vent of evaporator. Control variables were the refrigerant charging weight and the vacuum degree in the refrigerant pipeline before charging refrigerant. From the test, it was represented that the measuring values of (Tcom), LP and (Tcoo) were enabled to make the diagnosis of cooling performance deficiency according to quantity included in refrigerant of air-conditioner. The ranges of Tcom, LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively less than $55^{\circ}C$, more than 166.7 kPa-g(1.7 kgf/$cm^2$) and less than $13.7^{\circ}C$. In the case of using only external sensors and the condition under the normal performances of air conditioner, it was considered that the ranges of LP and Tcoo to make the diagnosis of cooling performance deficiency were respectively more than 166.7 Pa and less than $12^{\circ}C$.

Flame Spread Mechanism of a Blended Fuel Droplet Array at Supercritical Pressure

  • Iwahashi, Takeshi;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.15-22
    • /
    • 2002
  • Flame spread experiments of a fuel droplet array were performed using a microgravity environment. N-decane, 1-octadecene, and the blends (50% : 50% vol.) of these fuels were used and the experiments were conducted at pressures up to 5.0 MPa, which are over the critical pressure of these fuels. Observations of the flame spread phenomenon were conducted for OH radical emission images recorded using a high-speed video camera. The flame spread rates were calculated based on the time history of the spreading forehead of the OH emission images. The flame spread rate of the n-decane droplet-array decreased with pressure and had its minimum at a pressure around half of the critical pressure and then increased again with pressure. It had its maximum at a pressure over the critical pressure and then decreased gradually. The pressure dependence of flame spread rate of 1-octadecene were similar to those of n-decan, but the magnitude of the spread rate was much smaller than that of n-decane. The variation of the flame spread for the blended fuel was similar to that of n-decane in the pressure range from atmospheric pressure to near the critical pressure of the blended fuel. When the pressure increased further, it approached to that of 1-octadecene. Numerically estimated gas-liquid equilibrium states proved that almost all the fuel gas which evaporated from the droplet at ordinary pressure consisted of n-decane whereas near and over the critical pressure, the composition of the fuel gas was almost the same as that of the liquid phase, so that the effects of 1-octadecene on the flame spread rate was significant.

  • PDF