• Title/Summary/Keyword: High Speed Friction Test

Search Result 137, Processing Time 0.221 seconds

The properties and wear behavior of HVOF spray coating layer of Co-alloy powder

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.273-277
    • /
    • 2006
  • High velocity of oxy-fuel (HVOF) thermal spray coating is progressively replacing the other classical hard coatings such as chrome plating and ceramic coating by the classical methods, since the very toxic $Cr^{6+}$ ion is well known as carcinogen causing lung cancer, and the ceramic coatings are brittle. Co-alloy T800 powder is coated on the Inconel 718 substrates by the HVOF coating procesess developed by this laboratory. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester with a counter sliding SUS 304 ball both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied far the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $538^{\circ}C$ are drastically reduced compared to those of non-coated surface of Inconel 718 substrates. Wear traces and friction coefficients of both coated and non-coated surfaces are drastically reduced at a high temperature of $538^{\circ}C$ compared with those at room temperature. These show that the coating is highly recommendable far the durability Improvement coating on the surfaces vulnerable to frictional heat and wear.

Performance Assessment of Linear Motor for High Speed Machining Center (고속 HMC 이송계의 운동 특성 평가)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

Track Measurements of Strong Wind under High-speed Train to Investigate Ballast-flying Mechanism (자갈비산 메커니즘 연구를 위한 고속철도차량 하부유동 계측)

  • Kwon H.B.;Park C.S.;Nam S.W.;Ko T.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.369-373
    • /
    • 2005
  • To investigate the mechanism of ballast-flying phenomena by strong wind induced by high-speed trains, wind velocity in the vicinity of the track has been measured using 16-channel Kiel-probe array and detailed flow structure near the surface of the track has been analyzed. The position at which the underflow fully develop has been examined in order to assess the driving force of the turbulent flow under train and the results yields that the turbulent flow owing to the cavity of the inter-car as well as the friction force at the underbody of the train is the main reason of the strong wind under high-speed train. The preceding wind tunnel test results has been introduced to assess the probability of ballast-flying during the passage of the high-speed train by comparing the results from field-measuring. The results shows that when the G7 train as well as the KTX train runs at 300km/h, about 25m/s wind gust is induced just above the tie and the probability for small ballast under 50g to fly is about 50% when it is on the tie. If the G7 train runs at 350km/h, the wind gust just above the tie increases to 30m/s, therefore more radical countermeasure seems to be needed.

  • PDF

Rheological Models for Simulations of Concrete Under High-Speed Load (콘크리트 재료의 동적 물성 변화를 모사하기 위한 유변학적(Rheological)모델 개발 및 평가)

  • Hwang, Young Kwang;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.769-777
    • /
    • 2015
  • In this study, the rheological models were introduced and developed to reflect rate dependent tensile behaviour of concrete. In general, mechanical properties(e.g. strength, elasticity, and fracture energy) of concrete are increased under high loading rates. The strength of concrete shows high rate dependency among its mechanical properties, and the tensile strength has higher rate dependency than the compressional strength. To simulate the rate dependency of concrete, original spring set of RBSN(Rigid-Body- Spring-Network) model was adjusted with viscous and friction units(e.g. dashpot and Coulomb friction component). Three types of models( 1) visco-elastic, 2) visco-plastic, and 3) visco-elasto- plastic damage models) are considered, and the constitutive relationships for the models are derived. For validation purpose, direct tensile test were simulated, and characteristics of the three different rheological models were compared with experimental stress-strain responses. Simulation result of the developed visco-elasto-plastic damage(VEPD) model demonstrated well describing and fitting with experimental results.

A Study on the Improvement of Trolling Equipment for Spanish Mackerel and Yellow Tail in the Coast of Jeju island (제주 연근해 삼치·방어용 끌낚시의 조업 장비 개발)

  • Park, Young-Seok;Kim, Byung-Yeob;Lee, Chang-Heon
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.2
    • /
    • pp.422-429
    • /
    • 2015
  • The purpose of this study is the improvement of the existing trolling hauler, which has only one wheel to wind a main line, for saving man power around the coast of Jeju island. The trolling hauler manufactured for a test performance consisted of the wheel part of a main line and the roller part of a leader line including labor-saving devices comprised of a friction clutch, a fastener and springs. Even though this existing electric hauler system is convenient to control the wheel speed and the winding direction, it is apt to cost high and to corrode quickly at sea. Therefore, to remove these negative elements and to operate rollers for hoisting a leader line of the trolling, hydraulic motors were used separately. As a result, according to using of labor-saving devices, the towing tension occurred in operating in fishing ground could be selected moderately without breaking of lines and the operating efficiency of the trolling hauler was verified.

Lateral Load Test on the Bar-type Anti-buoyancy Anchors in the Weathered Rock (풍화암에 시공된 Bar Type 부력앵커의 수평재하시험)

  • Park, Chan-Duk;Lee, Kyu-Hwan;Ryu, Nam-Jae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.165-174
    • /
    • 2004
  • This study is about a horizontal load test of buoyance anchor installed in the section where underground water level happens in the depth of 5m under the ground when the ground is excavated, because the section as a excavation section of high speed railway ${\bigcirc}{\bigcirc}$ station is near a rivers and because the section always has a reservoir of full water level on the left. Therefore, in this study we will appraise the long-term stability of the structure permanently being taken buoyance by the underground water level, through the spot test of the buoyance anchor installed in the section where underground water level happens. For that, Bar Type anchor is used, which can get enough pulling-out force by a method to resist buoyance by using friction force against the ground by high strength steel rod or steel wire. Anti-buoyance anchor is installed on the bottom slab of underground structure being taken horizontal force by the braking and accelerating of high speed train. And, It is aimed to analyze and grasp the review result of stability for the horizontal force that happens at the parking and stopping of high speed train, by executing horizontal load test for the grasping of the movements characteristic of buoyance anchor.

Wear behaviors of HVOF spray coating of Co-alloy T800

  • Cho, Tong-Yul;Yoon, Jae-Hong;Kim, Kil-Su;Park, Bong-Kyu;Youn, Suk-Jo;Back, Nam-Ki;Chun, Hui-Gon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2006
  • HVOF thermal spray coating of Co-alloy T800 is progressively replacing the classical hard coatings such as chrome plating because of the very toxic $Cr^{6+}$ ion known as carcinogen causing lung cancer. For the study of the possibility of replacing of chrome plating, the wear properties of HVOF Co-alloy T800 coatings are investigated using the reciprocating sliding tester both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$. The possibility as durability improvement coating is studied for the application to the high speed spindles vulnerable to frictional heat and wear. Wear mechanisms at the reciprocating sliding wear test are studied for the application to the systems similar to the sliding test such as high speed spindles. Wear debris and frictional coefficients of T800 coatings both at room and at an elevated temperature of $1000^{\circ}F\;(538^{\circ}C)$ are drastically reduced compared to those of non-coated surface of parent substrate Inconel 718. This study shows that the coating is recommendable for the durability improvement coatings on the surfaces vulnerable to frictional heat. The sliding surfaces are weared by the mixed mechanisms such as oxidative wear, abrasion by the sliding ball slurry erosion by the mixture of solid particles and small drops of the melts and semi-melts of the attrited particles cavitation by the relative motions among the coating, sliding ball, the melts and semi-melts. and corrosive wear. The oxide particles and the melts and semi-melts play roles as solid and liquid lubricant reducing the wear and friction coefficient.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6. Studies on Friction and Wear Properties of Carbon-Carbon Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 6. 탄소/탄소 복합재료의 마찰 및 마모특성)

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.133-141
    • /
    • 2001
  • The friction and wear properties of carbon-carbon composites made with different weight percent of $MoSi_2$ as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment. The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior(${\mu}$=0.15~0.2) during normal wear regime to the high-friction behavior(${\mu}$=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180${\circ}C$. The existence of temperature-dependent friction and wear regimes implied that the performance of specimen made with carbon-carbon composites was markedly affected by the thermal properties of the composites. The carbon-carbon composites filled with MoSi2 exhibited two times lower coefficient of friction and wear rate in comparison with the composites without $MoSi_2$. Especially, the composites containing 4wt% $MoSi_2$ filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without $MoSi_2$.

  • PDF

Development of Tube End-forming Process using Roll Die (롤다이를 이용한 튜브 축관공정 개발)

  • Kim, Yeong-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.121-126
    • /
    • 2011
  • An accumulator placed on the refrigerant cycle pipe lines is a part to relax fluctuations of pressure within the pipe lines and stabilize refrigerants flowed into pipe. The accumulator has been mainly manufactured by the process of tube spinning using CNC(Computer Numerical Control) lathe. However, this process has the defects which are low productivity per hour and high cost. For that reason, tube end-forming using roll die is actively being developed, recently. The purpose of this study is to develope the tube end-forming process using roll die in order to manufacture the accumulator for the refrigeration pipe lines. First, the process design of tube end-forming was performed based on specification of product, and then was verified with FE analysis. Also, the effects of friction coefficient and revolution speed of roll die on forming load were investigated. The analytical results were applied in the final process design of tube end-forming. Finally, tube end-forming test was carried out to verify the validity of the FE analysis and the process design.

Analysis of Electromagnetic Wave Absorbers for Applying Magnetic Levitation (자기부상체 적용을 위한 전자파 흡수체의 특성 분석)

  • Seo, Yong-beom;Kang, Hyun-il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • EMC (Electro Magnetic Compatibility) of the electrical railway must be ensured for safety of passenger. Maglev trains has not friction between the wheels and the rails because levitation by an permanent magnets, electromagnets and superconducting magnets etc. So, it is advantageous to maintain a high speed without noise and vibrations. In this paper, we investigated that the magnetic field of the before and after installation electromagnetic waves absorber in order to analyze the effects of electromagnetic waves. The theoretical analysis of the electromagnetic wave absorber was simulated using finite element method. The magnetic field properties of electromagnetic waves absorber were measured by EMI (Electro Magnetic Interference) test receiver.