• 제목/요약/키워드: High Speed Cutter

검색결과 54건 처리시간 0.025초

고속절단기의 진동저감을 위한 회전체역학 해석 (Rotordynamic Analysis for Vibration Reduction of a High Speed Cutter)

  • 서준호;백경원;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.1056-1061
    • /
    • 2004
  • The vibration of rotor systems is caused by various factors, such as misalignment, unbalance, gear meshing, error of assembly, etc. Modal test and TDA/ODS analysis were done. The dynamic analysis of the armature was done with SAMCEF which is a commercial software for finite element and kinematic analysis. The transient response of the armature is calculated by the SAMCEF with the consideration of magnetic force and bearing stiffness, which are the essential elements for the design of high speed cutter. Main frequency of the vibration is due to the unbalance of the armature. The FEM analysis model considering unbalance and the high speed cutter have same vibration properties. The vibration sources of the high speed cutter is proved to be unbalance.

  • PDF

고속가공을 위한 정면밀링커터 바디시스템 개발 (Development of Face Milling Cutter Body System for High Speed Machining)

  • 장성민;맹민재;조명우
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.21-28
    • /
    • 2004
  • In modem manufacturing industries such as the airplane and automobile, aluminum alloys which are remarkable in durability have been utilized effectively. High-speed machining technology for surface roughness quality of workpiece has been applied in these fields. Higher cutting speed and feedrates lead to a reduction of machining time and increase of surface quality. Furthermore, the reduction of time required for polishing or lapping of machined surfaces improves the production rate. Traditional milling process for high speed cutting can be machined with end mill tool. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, face milling cutter which gives high MRR has developed face milling cutter body for the high speed machining of light alloy to overcome the problems. Also vibration experiment to detect natural frequency in free state and frequency characteristics during machining are performed to escape resonance.

터빈블레이드의 5축 고속가공에서 가공경로와 공구기울임 방향의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이유하;이득우;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.155-160
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries has brought new technological challenges, rebated to the growing complexity of products and the new geometry of the models. High speed milling with a 5-Axis milling machine has been widely used fur 3D sculptured surface parts. When turbine blades are machined by a 5-axis milling, their thin and cantilever shape causes vibrations, deflections and twists. Therefore, the surface roughness and the waviness of the workpiece are not good. In this paper, the effects of cutter orientation and the lead/tilt angle used to machine turbine blades with a 5-axis high speed ball end-milling were investigated to improve geometric accuracy and surface integrity. The experiments were performed using a lead/tilt angle of 15$^{\circ}$ to the workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vortical inward directions. Workpiece deflection, surface roughness and the machined surface were all measured with various cutter orientations such as cutting directions, and lead/tilt angle. The results show that the best cutting strategy for machining turbine blades with a 5-axis milling is horizontal inward direction with a tilt angle.

  • PDF

터빈블레이드의 5축 고속가공에서 최적가공경로의 선정 (Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade)

  • 임태순;이채문;김석원;이득우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.53-60
    • /
    • 2002
  • Recently, the development of aerospace and automobile industries brought new technological challenges, related to the growing complexity of products and new geometry models. High speed machining using 5-Axis milling machine is widely used for 3D sculptured surface parts. 5-axis milling of turbine blade generates the vibration, deflection and twisting caused from thin and cantilever shape. So, the surface roughness and the waviness of workpiece are not good. In this paper, The effects of cutter orientation and lead/tilt angle in 5-Axis high speed ball end-milling of turbine blade were investigated to improve the geometric accuracy and surface integrity. The experiments were performed at lead/tilt angle $15^{\circ}$ of workpiece with four cutter directions such as horizontal outward, horizontal inward, vertical outward, and vertical inward. Workpiece deflection, surface roughness and machined surface were measured with various cutter orientations such as cutting direction, and lead/tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle. The results show that when 5-axis machining of turbine blade, the best cutting strategy is horizontal inward direction with tilt angle.

  • PDF

고속가공용 엔드밀의 형상설계에 관한 연구(2) (A Study on the Design of Endmill Geometry in High Speed Machining)

  • 고성림;배승민;김경배;서천석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.19-22
    • /
    • 1997
  • The objective of this research is to use an analytical and experimental approach to develop optimal tool geometry for high speed machining. The tool geometry parameters and cutting process have complex relationships. Until now, numerous cutting tests were needed to acquire optimal design of endmill for the purpose of high speed machining, dut to the insufficient knowledge about process in high speed machining. In order to improve the cutting ability of endmill, a model for optimal cutter shape was developed to minimize resultant cutting force by combing cutting force and wear test and surface roughness test from optimized and conventional cutter with the same cutting condition. Using various tools with different geometry, relationships between the tool geometry parameter, rake angle, clearance angle, lengh of cutter have been stuied.

  • PDF

복합지반에서의 쉴드 TBM 커터헤드의 회전속도에 따른 커터비트 손상에 관한 실험적 연구 (A study on the damage of cutter bit due to the rotation speed of shield TBM cutter head in mixed ground)

  • 강은모;김용민;황인준;김상환
    • 한국터널지하공간학회 논문집
    • /
    • 제17권3호
    • /
    • pp.403-413
    • /
    • 2015
  • 본 논문은 복합지반에서 쉴드 TBM 커터헤드의 회전속도 제어에 관한 실험적 연구이다. 복합지반에서는 암반을 굴착하는 디스크커터와 더불어 커터비트의 절삭 성능이 매우 중요하다. 이 연구에서는 특히 풍화토와 풍화암으로 이루어진 복합지반의 커터비트의 성능평가에 초점을 두었다. 이 연구를 위하여 실험실용으로 개발된 쉴드 TBM 커터비트 평가 장비를 이용하여 실내시험을 실시하였다. 복합지반은 공학적 상사성을 고려하여 조성하였다. 조성된 복합지반에서 쉴드 TBM 커터헤드 회전속도를 2, 3, 4 rpm으로 적용하여 각 커터비트에 작용하는 절삭력을 측정하고 회전에 따른 절삭력의 변화를 분석하였다. 실험결과로 부터 커터비트에 작용하는 절삭력은 지반경계부에서 급상승하는 경향을 보여주었다. 또한 이러한 상승되는 절삭력의 크기는 쉴드 TBM 커터헤드의 회전속도가 클수록 크게 나타났다. 이러한 결과로부터 복합지반에서 쉴드 TBM 커터헤드의 회전속도를 빠르게 할 경우 커터비트에 가해지는 위험요소가 더 크다는 것을 보여주고 있다. 따라서 복합지반조건에 현장 TBM 굴착 시 회전속도의 제어가 필요한 것으로 나타났으며 감속시키는 것이 비트에 가해지는 리스크를 저감시킬 수 있을 것이다.

고속절단기의 진동.소음 저감 연구 (Noise and Vibration Reduction of High-speed Cutter)

  • 기호철;박주표;차원준;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.944-949
    • /
    • 2003
  • A High-speed cutter, a kind of electric tool is studied to reduce its vibration and noise. The experimental modal analysis, the operational deflection shapes(ODS) and the time domain analysis(TDA) are used in the SMS software to analyze the vibration signals from an operating high-speed cutters under steady state operating condition. The second mode and fifth m,)do of the base plate coincide with the driving frequencies of the motor, And the vibration of the wheel cover is caused by the gap between the main wheel cover and the sub wheel cover. The structural modification for the base plate was done to reduce the vibration. The effect of modification is verified through the test.

  • PDF

니켈계 합금의 볼엔드밀 가공에서 절삭 방향에 따른 영향 (Analysis of Cutter Orientation when Ball Nose End Milling Nickel Based Superalloys)

  • 이득우
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2496-2501
    • /
    • 2000
  • High speed ball end milling is attracting interest in the aerospace industry for the machining of complex 31) airfoil surfaces in nickel based superalloys, Experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness, when high speed ball end milling nickel based supperalloy(lnconel 718). Dry cutting was performed using 8min diameter solid carbide cutters coated with either TiA1N or CrN for the workpiece mounted at an angle of 45˚ from the cutter axis. A horizontal downwards cutting orientation provided the best tool life with cut lengths~50% longer than for all other directions. Evaluation of cutting forces and associated spectrum analysis of results indicated that cutters employed in a horizontal downwards direction produced the least vibration.

High Speed Ball End Milling for Difficult-to-Cut Materials

  • Lee, Deug-Woo
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.19-27
    • /
    • 2000
  • High speed machining (HSM), specifically end milling and ball end cutting, is attracting interest in the die/mold or aerospace industries for the machining of complex 3D surfaces. HSM of difficult-to-cut materials such as die/mold steels, titanium alloys or nickel based superalloys generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. Following a brief introduction on HSM and reated aerospace or die/mold work, the paper reviews published data on the effect of cutter/workpiece orientation and cutting environments on tool performance. First, experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness. Cutting was performed using 8 mm diameter PVD coated solid carbide cutters with the workpiece mounted at an angle of 45 degree from the cutter axis. A horizontal downwards cutting orientation proveded the best tool life with cut lengths ∼50% longer than for all other directions (horizontal upwards, vertical downwards, vertical upwards). Second, the cutting environments were investigated for dry, flood coolant, and compressed chilly air coolant cutting. The experiments were performed for various hardened materials and various coated tools. The results show that the cutting environment using compressed cilly air coolant provided better tool life than the flood coolant or the dry.

  • PDF

Continuous Tool-path Generation for High Speed Machining

  • Lee, Eung-Ki;Hong, Won-Pyo;Park, Jong-Geun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.31-36
    • /
    • 2002
  • A continuous tool-path, that is to cut continuously with the minimum number of cutter retractions during the cutting operations, is developed in order to minimise the fluctuation of cutting load and the possibility of chipping on the cutting edge in HSM (high-speed machining). This algorithm begins with the offset procedure along the boundary curve of the sculptured surface being machined. In the of offset procedure, the offset distance is determined such that the scallop height maintains a constant roughness to ensure higher levels of efficiency and quality in high-speed machining. Then, the continuous path is generated as a kind of the diagonal curve between the offset curves. This path strategy is able to connect to neighbor paths without cutter retractions. Therefore, the minimum tool retraction tool-path can be generated And, it allows the sculptured surface incorporating both steep and flat areas to be high-speed machined.