• Title/Summary/Keyword: High Resolution Sea Surface Temperature

Search Result 82, Processing Time 0.022 seconds

The Characteristics of Yellow Sea Bottom Cold Water in September, 2006 (2006년 9월 황해저층냉수괴의 분포 특성)

  • Choi, Young-Chan
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.23 no.3
    • /
    • pp.425-432
    • /
    • 2011
  • In order to understand the characteristics of the distribution and the nutrients of the Yellow Sea Bottom Cold Water during summer to fall, temperature, salinity and nutrients have been investigated in the fifteen stations in the Yellow Sea. In september, the Changjiang diluted water with more than $20^{\circ}C$ distributed in the surface and the Yellow Sea Bottom Cold Water distributed in the layer below 30m depth with less than $10^{\circ}C$. Specially, water mass with less than $5^{\circ}C$ in the layer below 50m depth expanded southward down to the north latitude of $35^{\circ}$ with expanding more to the coasts of China than to the coasts of Korea. The salinity of the cold water mass with $8^{\circ}C$ in the deep layer of more than 50m depth was relatively high as 33.5 psu and expanded northward forming fronts of temperature and salinity. The concentration of total inorganic nitrogen was two times higher in the cold water mass than in the surface water, which means that resolution and consumption were low due to cold temperature in the bottom layer. In conclusion, the cold water expanded southward down to the north latitude of $35^{\circ}$ by September and had high concentration of nutrients.

Ordinary Kriging of Daily Mean SST (Sea Surface Temperature) around South Korea and the Analysis of Interpolation Accuracy (정규크리깅을 이용한 우리나라 주변해역 일평균 해수면온도 격자지도화 및 내삽정확도 분석)

  • Ahn, Jihye;Lee, Yangwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • SST (Sea Surface Temperature) is based on the atmosphere-ocean interaction, one of the most important mechanisms for the Earth system. Because it is a crucial oceanic and meteorological factor for understanding climate change, gap-free grid data at a specific spatial and temporal resolution is beneficial in SST studies. This paper examined the production of daily SST grid maps from 137 stations in 2020 through the ordinary kriging with variogram optimization and their accuracy assessment. The variogram optimization was achieved by WLS (Weighted Least Squares) method, and the blind tests for the interpolation accuracy assessment were conducted by an objective and spatially unbiased sampling scheme. The four-round blind tests showed a pretty high accuracy: a root mean square error between 0.995 and 1.035℃ and a correlation coefficient between 0.981 and 0.982. In terms of season, the accuracy in summer was a bit lower, presumably because of the abrupt change in SST affected by the typhoon. The accuracy was better in the far seas than in the near seas. West Sea showed better accuracy than East or South Sea. It is because the semi-enclosed sea in the near seas can have different physical characteristics. The seasonal and regional factors should be considered for accuracy improvement in future work, and the improved SST can be a member of the SST ensemble around South Korea.

Cloud Detection Using HIMAWARI-8/AHI Based Reflectance Spectral Library Over Ocean (Himawari-8/AHI 기반 반사도 분광 라이브러리를 이용한 해양 구름 탐지)

  • Kwon, Chaeyoung;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_1
    • /
    • pp.599-605
    • /
    • 2017
  • Accurate cloud discrimination in satellite images strongly affects accuracy of remotely sensed parameter produced using it. Especially, cloud contaminated pixel over ocean is one of the major error factors such as Sea Surface Temperature (SST), ocean color, and chlorophyll-a retrievals,so accurate cloud detection is essential process and it can lead to understand ocean circulation. However, static threshold method using real-time algorithm such as Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Himawari Imager (AHI) can't fully explained reflectance variability over ocean as a function of relative positions between the sun - sea surface - satellite. In this paper, we assembled a reflectance spectral library as a function of Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA) from ocean surface reflectance with clear sky condition of Advanced Himawari Imager (AHI) identified by NOAA's cloud products and spectral library is used for applying the Dynamic Time Warping (DTW) to detect cloud pixels. We compared qualitatively between AHI cloud property and our results and it showed that AHI cloud property had general tendency toward overestimation and wrongly detected clear as unknown at high SZA. We validated by visual inspection with coincident imagery and it is generally appropriate.

Characteristics of Sensible Heat and Latent Heat Fluxes over the East Sea Related with Yeongdong Heavy Snowfall Events (영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성)

  • Kim, Ji-Eon;Kwon, Tae-Yong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.237-250
    • /
    • 2005
  • To investigate the air mass modification related with Yeongdong Heavy snowfall events, we examined sensible and latent heat fluxes on the East Sea, the energy exchange between atmosphere and ocean in this study. Sensible and latent heats were calculated by a bulk aerodynamic method, in which NCEP/NCAR reanalysis data and NOAA/AVHRR weekly SST data with high resolution were used. Among winter precipitation events in the Yeongdong region, 19 heavy precipitation events $(1995{\sim}2001)$ were selected and classified into three types (mountain, cold-coastal, and warm types). Mountain-type precipitation shows highly positive anomalies of sensible and latent heats over the southwestern part of the East Set When separating them into the two components due to variability of wind and temperature/ specific Humidity, it is shown that the wind components are dominant. Cold-coastal-type precipitation also shows strong positive anomalies of sensible and latent heats over the northern part and over the central-northern part of the East Sea, respectively. It is shown that the sensible heat anomalies are caused mostly by the decrease of surface air temperature. So it can be explained that cold-coastal-type precipitation is closely related with the air mass modification due to cold air advection over warm ocean surface. But in warm-type precipitation, negative anomalies are found in the sensible and latent heat distributions. From this result, it may be postulated that warm-type precipitation is affected by the internal process of the atmosphere rather than the atmosphere-ocean interaction.

Generation of Daily High-resolution Sea Surface Temperature for the Seas around the Korean Peninsula Using Multi-satellite Data and Artificial Intelligence (다종 위성자료와 인공지능 기법을 이용한 한반도 주변 해역의 고해상도 해수면온도 자료 생산)

  • Jung, Sihun;Choo, Minki;Im, Jungho;Cho, Dongjin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_2
    • /
    • pp.707-723
    • /
    • 2022
  • Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.

A Model to Identify Expeditiously During Storm to Enable Effective Responses to Flood Threat

  • Husain, Mohammad;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.5
    • /
    • pp.23-30
    • /
    • 2021
  • In recent years, hazardous flash flooding has caused deaths and damage to infrastructure in Saudi Arabia. In this paper, our aim is to assess patterns and trends in climate means and extremes affecting flash flood hazards and water resources in Saudi Arabia for the purpose to improve risk assessment for forecast capacity. We would like to examine temperature, precipitation climatology and trend magnitudes at surface stations in Saudi Arabia. Based on the assessment climate patterns maps and trends are accurately used to identify synoptic situations and tele-connections associated with flash flood risk. We also study local and regional changes in hydro-meteorological extremes over recent decades through new applications of statistical methods to weather station data and remote sensing based precipitation products; and develop remote sensing based high-resolution precipitation products that can aid to develop flash flood guidance system for the flood-prone areas. A dataset of extreme events has been developed using the multi-decadal station data, the statistical analysis has been performed to identify tele-connection indices, pressure and sea surface temperature patterns most predictive to heavy rainfall. It has been combined with time trends in extreme value occurrence to improve the potential for predicting and rapidly detecting storms. A methodology and algorithms has been developed for providing a well-calibrated precipitation product that can be used in the early warning systems for elevated risk of floods.

Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data (고해상도 Landsat 8 위성자료기반의 지표면 온도 산출)

  • Jee, Joon-Bum;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae;Choi, Young-Jean
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.171-183
    • /
    • 2016
  • Land Surface Temperature (LST) retrieved from Landsat 8 measured from 2013 to 2014 and it is corrected by surface temperature observed from ground. LST maps are retrieved from Landsat 8 calculate using the linear regression function between raw Landsat 8 LST and ground surface temperature. Seasonal and annual LST maps developed an average LST from season to annual, respectively. While the higher LSTs distribute on the industrial and commercial area in urban, lower LSTs locate in surrounding rural, sea, river and high altitude mountain area over Seoul and surrounding area. In order to correct the LST, linear regression function calculate between Landsat 8 LST and ground surface temperature observed 3 Korea Meteorological Administration (KMA) synoptic stations (Seoul(ID: 108), Incheon(ID: 112) and Suwon(ID: 119)) on the Seoul and surrounding area. The slopes of regression function are 0.78 with all data and 0.88 with clear sky except 5 cloudy pixel data. And the original Landsat 8 LST have a correlation coefficient with 0.88 and Root Mean Square Error (RMSE) with $5.33^{\circ}C$. After LST correction, the LST have correlation coefficient with 0.98 and RMSE with $2.34^{\circ}C$ and the slope of regression equation improve the 0.95. Seasonal and annual LST maps represent from urban to rural area and from commercial to industrial region clearly. As a result, the Landsat 8 LST is more similar to the real state when corrected by surface temperature observed ground.

Characteristics of Spectra of Daily Satellite Sea Surface Temperature Composites in the Seas around the Korean Peninsula (한반도 주변해역 일별 위성 해수면온도 합성장 스펙트럼 특성)

  • Woo, Hye-Jin;Park, Kyung-Ae;Lee, Joon-Soo
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.632-645
    • /
    • 2021
  • Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.

Study on sea fog detection near Korea peninsula by using GMS-5 Satellite Data (GMS-5 위성자료를 이용한 한반도 주변 해무탐지 연구)

  • 윤홍주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.4
    • /
    • pp.875-884
    • /
    • 2000
  • Sea fog/stratus is very difficult to detect because of the characteristics of air-sea interaction and locality ,and the scantiness of the observed data from the oceans such as ships or ocean buoys. The aim of our study develops new algorism for sea fog detection by using Geostational Meteorological Satellite-5(GMS-5) and suggests the technics of its continuous detection. In this study, atmospheric synoptic patterns on sea fog day of May, 1999 are classified; cold air advection type(OOUTC, May 10, 1999) and warm air advection type(OOUTC, May 12, 1999), respectively, and we collected two case days in order to analyze variations of water vapor at Osan observation station during May 9-10, 1999.So as to detect daytime sea fog/stratus(OOUTC, May 10, 1999), composite image, visible accumulated histogram method and surface albedo method are used. The characteristic value during day showed A(min) .20% and DA < 10% when visible accumulated histogram method was applied. And the sea fog region which is detected is similar in composite image analysis and surface albedo method. Inland observation which visibility and relative humidity is beneath 1Km and 80%, respectively, at OOUTC, May 10,1999; Poryoung for visble accumulated histogram method and Poryoung, Mokp'o and Kangnung for surface albedo method. In case of nighttime sea fog(18UTC, May 10, 1999), IR accumulated histogram method and Maximum brightness temperature method are used, respectively. Maxium brightness temperature method dectected sea fog better than IR accumulated histogram method with the charateristic value that is T_max < T_max_trs, and then T_max is beneath 700hPa temperature of GDAPS(Global Data Assimilation and Prediction System). Sea fog region which is detected by Maxium brighness temperature method was similar to the result of National Oceanic and Atmosheric Administratio/Advanced Very High Resolution Radiometer (NOAA/AVHRR) DCD(Dual Channel Difference), but usually visibility and relative humidity are not agreed well in inland.

  • PDF

Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere (북반구 해빙 지역에서 세 종류 위성관측 표면온도에 대한 오차분석)

  • Kang, Hee-Jung;Yoo, Jung-Moon
    • Journal of the Korean earth science society
    • /
    • v.36 no.2
    • /
    • pp.139-157
    • /
    • 2015
  • We investigated the relative errors of satellite-observed Surface Skin Temperature (SST) data caused by sea ice in the northern hemispheric ocean ($30-90^{\circ}N$) during April 16-24, 2003-2014 by intercomparing MODerate Resolution Imaging Spectroradiometer (MODIS) Ice Surface Temperature (IST) data with two types of Atmospheric Infrared Sounder (AIRS) SST data including one with the AIRS/Advanced Microwave Sounding Unit-A (AMSU) and the other with 'AIRS only'. The MODIS temperatures, compared to the AIRS/AMSU, were systematically up to ~1.6 K high near the sea ice boundaries but up to ~2 K low in the sea ice regions. The main reason of the difference of skin temperatures is that the MODIS algorithm used infrared channels for the sea ice detection (i.e., surface classification), while microwave channels were additionally utilized in the AIRS/AMSU. The 'AIRS only' algorithm has been developed from NASA's Goddard Space Flight Center (NASA/GSFC) to prepare for the degradation of AMSU-A by revising part of the AIRS/AMSU algorithm. The SST of 'AIRS only' compared to AIRS/AMSU showed a bias of 0.13 K with RMSE of 0.55 K over the $30-90^{\circ}N$ region. The difference between AIRS/AMSU and 'AIRS only' was larger over the sea ice boundary than in other regions because the 'AIRS only' algorithm utilized the GCM temperature product (NOAA Global Forecast System) over seasonally-varying frozen oceans instead of the AMSU microwave data. Three kinds of the skin temperatures consistently showed significant warming trends ($0.23-0.28Kyr^{-1}$) in the latitude band of $70-80^{\circ}N$. The systematic disagreement among the skin temperatures could affect the discrepancies of their trends in the same direction of either warming or cooling.