• Title/Summary/Keyword: High Resolution Satellite Images

Search Result 583, Processing Time 0.025 seconds

Development and Evaluation of Image Segmentation Technique for Object-based Analysis of High Resolution Satellite Image (고해상도 위성영상의 객체기반 분석을 위한 영상 분할 기법 개발 및 평가)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.627-636
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation to consider spectral and spatial information of high resolution satellite image. Firstly, the initial seeds were automatically selected using local variation of multi-spectral edge information. After automatic selection of significant seeds, a segmentation was achieved by applying MSRG which determines the priority of region growing using information drawn from similarity between the extracted each seed and its neighboring points. In order to evaluate the performance of the proposed method, the results obtained using the proposed method were compared with the results obtained using conventional region growing and watershed method. The quantitative comparison was done using the unsupervised objective evaluation method and the object-based classification result. Experimental results demonstrated that the proposed method has good potential for application in the object-based analysis of high resolution satellite images.

Image Data Processing System for Satellite

  • Park Jong-Euk;Kong Jong-Pil;Heo Haeng-Pal;Kim Young Sun;Youn Heong-Sik;Paik Hong Yul
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.486-488
    • /
    • 2004
  • The SRI (Super Resolution Imager) uses the CCD (Charge coupled device) detector that is used to convert the light into electronic data. The purpose of the SRI is to obtain data for high resolution images by converting incoming light into digital stream of pixel data. The SRI has a high resolution, so this electronic system needs more fast imaging data processing, detector control and data transmission systems. This report describes the required system specification and manufactured electronic system for satellite.

  • PDF

Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

  • Moon, Hogyung;Choi, Taeyoung;Kim, Guhyeok;Park, Nyunghee;Park, Honglyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate high-resolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

Simulation and Colorization between Gray-scale Images and Satellite SAR Images Using GAN (GAN을 이용한 흑백영상과 위성 SAR 영상간의 모의 및 컬러화)

  • Jo, Su Min;Heo, Jun Hyuk;Eo, Yang Dam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.125-132
    • /
    • 2024
  • Optical satellite images are being used for national security and collection of information, and their utilization is increasing. However, it acquires low-quality images that are not suitable for the user's requirement due to weather conditions and time constraints. In this paper, a deep learning-based conversion of image and colorization model referring to high-resolution SAR images was created to simulate the occluded area with clouds of optical satellite images. The model was experimented according to the type of algorithm applied and input data, and each simulated images was compared and analyzed. In particular, the amount of pixel value information between the input black-and-white image and the SAR image was similarly constructed to overcome the problem caused by the relatively lack of color information. As a result of the experiment, the histogram distribution of the simulated image learned with the Gray-scale image and the high-resolution SAR image was relatively similar to the original image. In addition, the RMSE value was about 6.9827 and the PSNR value was about 31.3960 calculated for quantitative analysis.

Change of NDVI by Surface Reflectance Based on KOMPSAT-3/3A Images at a Zone Around the Fukushima Daiichi Nuclear Power Plant (후쿠시마 제1 원전 주변 지역의 KOMPSAT-3/3A 영상 기반 지표반사도 적용 식생지수 변화)

  • Lee, Jihyun;Lee, Juseon;Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.2027-2034
    • /
    • 2021
  • Using multi-temporal KOMPSAT-3/3A high-resolution satellite images, the Normalized Difference Vegetation Index (NDVI) for the area around the Fukushima daiichi nuclear power plant was determined, and the pattern of vegetation changes was analyzed. To calculate the NDVI, surface reflectance from the KOMPSAT-3/3A satellite image was used. Satellite images from four years were used, and the zones where the images overlap was designated as the area of interest (AOI) for the study, and by setting a profile passing through highly vegetated area as a data analysis method, the changes by year were examined. In addition, random points were extracted within the AOI and displayed as a box plot to quantitatively indicate change of NDVI distribution pattern. The main results of this study showed that the NDVI in 2014 was low within AOI in the vicinity of the nuclear power plant, but vegetated area continued to expand until 2021. These results were also confirmed in the change monitoring results shown in a profile or box plot. In disaster areas where access is restricted, such as the Fukushima nuclear power plant area, where it is difficult to collect field data, obtaining land cover classification products with high accuracy using satellite images is challenging, so it is appropriate to analyze them using primary outputs such as vegetation indices obtained from high-resolution satellite imagery. It is necessary to establish an international cooperation system for jointly utilizing satellite images. Meanwhile, to periodically monitor environmental changes in neighboring countries that may affect the Korean peninsula, it is necessary to establish utilization models and systems using high-resolution satellite images.

CCSDS 122.0-B-1 : An Image Compression Technology for High Resolution Satellites (CCSDS 122.0-B-1 : 고해상도위성의 영상압축 기술)

  • Seo, Seok-Bae;Koo, In-Hoi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.90-98
    • /
    • 2008
  • In recent, image data compression method of high resolution satellite image is the important issue for its application and development. The CCSDS (Consultative Committee for Space Data Systems) published a standard for the high resolution image data compression, CCSDS 122.0-B-1, in the end of 2005, which is expected to be widely applied in process of compression for the high resolution satellite images. In this paper, it is explained that the current trends of image compression methods for high resolution satellites, and then the comparison results between CCSDS 122.0-B-1 standard and JPEG are described.

  • PDF

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

Urban Spatial Analysis using Multi-temporal KOMPSAT-1 EOC Imagery

  • Kim Youn-Soo;Jeun Gab-Ho;Lee Kwang-Jae;Kim Byung-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.515-517
    • /
    • 2004
  • Although sustainable development of a city should in theory be based on updated spatial information like land cover/use changes, in practice there are no effective tools to get such information. However the development of satellite and sensor technologies has increased the supply of high resolution satellite data, allowing cost-effective, multi-temporal monitoring. Especially KOMPSAT-1(KOrea Multi-Purpose SATellite) acquired a large number of images of the whole Korean peninsula and covering some large cities a number of times. In this study land-use patterns and trends of Daejeon from the year 2000 to the year 2003 will be considered using land use maps which are generated by manual interpretation of multi-temporal KOMPSAT EOC imagery and to show the possibility of using high resolution satellite remote sensing data for urban analysis.

  • PDF

Fast Orthorectification for High Resolution Satellite Images Using Quadtree-Based Patch Backprojection

  • Chen, Liang-Chien;Teo, Tee-Ann;Rau, Jiann-Yeou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.687-689
    • /
    • 2003
  • High resolution satellite images have huge amount of pixels in common. Thus, an efficient method is required for the generation of orthoimages. Patch backprojection method is a feasible way to improve the efficiency with respect to the point-by-point patch backprojection. We will propose an Adaptive Patch that optimizes the patch size for different terrain variations. The essence of the patch optimization is quadrate structuring for terrain variations. The area of interest is, thus, sequentially subdivided to four quadrate tiles until a preset criterion is met. The experiment results indicated that the proposed method is efficient without losing accuracy.

  • PDF

Selective Histogram Matching of Multi-temporal High Resolution Satellite Images Considering Shadow Effects in Urban Area (도심지역의 그림자 영향을 고려한 다시기 고해상도 위성영상의 선택적 히스토그램 매칭)

  • Yeom, Jun-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • Additional high resolution satellite images, other period or site, are essential for efficient city modeling and analysis. However, the same ground objects have a radiometric inconsistency in different satellite images and it debase the quality of image processing and analysis. Moreover, in an urban area, buildings, trees, bridges, and other artificial objects cause shadow effects, which lower the performance of relative radiometric normalization. Therefore, in this study, we exclude shadow areas and suggest the selective histogram matching methods for image based application without supplementary digital elevation model or geometric informations of sun and sensor. We extract the shadow objects first using adjacency informations with the building edge buffer and spatial and spectral attributes derived from the image segmentation. And, Outlier objects like a asphalt roads are removed. Finally, selective histogram matching is performed from the shadow masked multi-temporal Quickbird-2 images.