• Title/Summary/Keyword: High Pressure Turbine Nozzle

Search Result 62, Processing Time 0.029 seconds

An Experimental Study on Flow in the Nozzle of a Radial Turbine (구심터빈의 노즐 내부 유동에 대한 시험 연구)

  • Kang, Jeong-Seek;Lim, Byeung-Jun;Ahn, Iee-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Experimental study on the flow field inside the nozzle for radial turbine was performed. At design point, the pressure is high and the Mach number is low at the pressure side of the nozzle inlet semi-vaneless space as the flow turns through the nozzle vanes. As the flow accelerates through the nozzle passage to the throat the pressure level at the pressure and suction sides becomes similar. The flow continued accelerating from the throat to the inlet of turbine wheel and the pressure field became uniform in the circumferential direction in the vaneless space. In high expansion ratio condition, strong favorable pressure gradient band region occurred just after the throat in the semi-vaneless space in the circumferential direction and the pressure became uniform in the circumferential direction after this band. In low expansion ratio condition, core flow acceleration is dominant after the throat and this non-uniform pressure field reached to the inlet of turbine wheel.

Effects of flow variation in the first stage nozzle on the performance of a partial arc admission in a steam turbine (증기터빈 1단 노즐의 조속현상이 터빈성능에 미치는 영향)

  • Yoon, In-Soo;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • Power plant industry has been developed at high-capacity, high-technology, and innovation. Steam turbine became the most useful equipment that dominate more than 50% of all the world electricity production. And developed new materials of the turbine blade and extended length of the turbine last blade brought reform in steam turbine performance upgrade. In this paper, when do partial load driving in high-capacity steam turbine, optimum driving method found whether there is something. In operating steam turbine, there is a lot of loss from secondary wake and throttle of the 1st stage nozzle by the biggest leading factor that load fluctuation affects in high-pressure steam turbine performance. Effect of internal efficiency by 1 stage nozzle is the biggest here, but here fluid flow and flow analysis were not yet examined closely definitely. So, Analyzed design data and acceptance performance test result to applying subcritical pressure drum type 560 MW, supercritical-pressure once through type 500 MW, and 800 MW steam turbines actually. In conclusion, at partial load driving, partial arc admission(PAA) is more efficient than full arc admission(FAA) efficiency. This is judged by because increase being proportional with gross energy of stream that is pressure - available energy if pressure of stream that is flowed in to the turbine increases, available energy becomes maximum and turbine efficiency improves. Therefore, turbine performance is that preview that first stage performance fell if decline is serious in partial load because first stage performance changes according to load.

  • PDF

Conjugate Heat Transfer Analysis of High Pressure Turbine with Secondary Flow Path and Thermal Barrier Coating (2차유로 및 열차폐 코팅을 고려한 고압터빈의 열유동 복합해석)

  • Kang, Young-Seok;Rhee, Dong Ho;Cha, Bong Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.37-44
    • /
    • 2015
  • Conjugate heat analysis on a high pressure turbine stage including secondary flow paths has been carried out. The secondary flow paths were designed to be located in front of the nozzle and between the nozzle and rotor domains. Thermal boundary conditions such as empirical based temperature or heat transfer coefficient were specified at nozzle and rotor solid domains. To create heat transfer interface between the nozzle solid domain and the rotor fluid domain, frozen rotor with automatic pitch control was used assuming that there is little temperature variation along the circumferential direction at the nozzle solid and rotor fluid domain interface. The simulation results showed that secondary flow injected from the secondary flow path not only prevents main flow from penetrating into the secondary flow path, but also effectively cools down the nozzle and rotor surfaces. Also thermal barrier coating with different thickness was numerically implemented on the nozzle surface. The thermal barrier coating further reduces temperature gradient over the entire nozzle surface as well as the overall temperature level.

Pressure and Velocity Distributions of Cross-flow Hydroturbine by Nozzle Shape (노즐형상변화에 따른 횡류수차의 압력과 속도 분포)

  • Lim, Jea-Ik;Choi, Young-Do;Lim, Woo-Seop;Kim, You-Taek;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2833-2838
    • /
    • 2007
  • Recently, small hydropower attracts attention because of its clean, renewable and abundant energy resources to develop. However, suitable turbine type is not determined yet in the range of small hydropower and it is necessary to study for the effective turbine type. Moreover, relatively high manufacturing cost by the complex structure of the turbine is the highest barrier for developing the small hydropower turbine. Therefore, a cross-flow turbine is adopted because of its simple structure and high possibility of applying to small hydropower. The purpose of this study is to examine the optimum configuration of nozzle shape to further optimize the cross-flow hydraulic turbine structure and to improve the performance. The results show that pressure on the runner blade in Stage 1 and velocity at nozzle outlet have close relation to the turbine performance.

  • PDF

Experimental Investigation of Turbopump Turbine : Turbine Performance and Effect of Nozzle-Rotor Clearance (터보펌프 터빈의 성능 및 노즐-로터 간극의 영향에 대한 실험적 고찰)

  • Jeong Eun-Hwan;Kang Sang-Hun;Shin Dong-Yoon;Park Pyu-Goo;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • This paper presents the performance test result of the 30-ton class turbopump turbine. Test has been conducted using high pressure cold air, The turbine overall performance has been measured for various pressure ratio and rotational speed settings. The nozzle-rotor clearance effect on turbine performance also has been tested for the four kinds of the nozzle-rotor clearance values. We found that turbine efficiency rated 51.1% at its design velocity ratio and pressure ratio of 13.5. We also found that turbine efficiency can be increased by 3.5% for approximately 1mm decrement of the nozzle-rotor clearance from its nominal value.

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

Design Optimization of Fan-shaped Film Cooling Hole Array on Pressure Side Surface of High Pressure Turbine Nozzle (고압터빈 노즐 압력면에서의 확장 형상 막냉각 홀 배열 최적설계)

  • Lee, Sanga;Rhee, Dong-Ho;Kang, Young-Seok;Kim, Jinuk;Seo, Do-Young;Yee, Kwanjung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.52-58
    • /
    • 2014
  • In the present work, design optimization of film-cooling hole array on the pressure side of high pressure turbine nozzle was conducted. There are four rows of fan-shaped film cooling holes on the nozzle pressure side surface and each row has a straight array of holes in the spanwise direction for baseline model. For design optimization, hole distributions in streamwise and spanwise directions for three rows of holes except first row are parameterized as a 2nd-order shape function. Three-dimensional compressible RANS equations are used for flow and thermal analysis around the nozzle surface and optimization technique using Design of Experiment, Kriging surrogate model and Genetic Algorithm is used. The results shows that averaged adiabatic wall temperature at the whole nozzle surface decreases about 2.7% and averaged film cooling effectiveness at the pressure side of nozzle increased about 8.2%.

A Study on Reliability of Kriging Based Approximation Model and Aerodynamic Optimization for Turbofan Engine High Pressure Turbine Nozzle (터보팬 엔진 고압터빈 노즐에 대한 크리깅 모델 기반 근사모델의 신뢰도 및 공력성능 최적화 연구)

  • Lee, Sanga;Lee, Saeil;Kang, Young-Seok;Rhee, Dong-Ho;Lee, Dong-Ho;Kim, Kyu-Hong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.6
    • /
    • pp.32-39
    • /
    • 2013
  • In the present study, three-dimensional aerodynamic optimization of high pressure turbine nozzle for turbofan engine was performed. For this, Kriging surrogate model was built and refined iteratively by supplying additional experimental points until the surrogate model and CFX result has effective difference on objective function. When the surrogate model satisfied this reliability condition and developed enough, optimum point was investigated. Commercial program PIAnO was used for optimization process and evolutionary algorithm was used for searching optimum point. As a result, difference between estimated value from Kriging surrogate model and CFD result converges within 0.01% and the optimized nozzle shape has 0.83% improved aerodynamic efficiency.

A Study on the Flow Characteristic of surroundings of the Extracting Nozzle for Shell Wall Thinning of a Feedwater Heater (고압형 급수가열기 동체 감육 완화를 위한 추기노즐 주변의 유동특성 연구)

  • Seo, Hyuk-Ki;Kim, Yoon-Shin;Kim, Kyung-Hun;Hwang, Kyeong-Mo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.841-846
    • /
    • 2009
  • Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied several impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

  • PDF

Variable Geometry Mixed Flow Turbine for Turbochargers: An Experimental Study

  • Rajoo, Srithar;Martinez-Botas, Ricardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.155-168
    • /
    • 2008
  • This paper investigates a variable geometry (VG) mixed flow turbine with a novel, purposely designed pivoting nozzle vane ring. The nozzle vane ring was matched to the 3-dimensional aspect of the mixed flow rotor leading edge with lean stacking. It was found that for a nozzle vane ring in a volute, the vane surface pressure is highly affected by the flow in the volute rather than the adjacent vane surface interactions, especially at closer nozzle positions. The performance of the VG mixed flow turbine has been evaluated experimentally in steady and unsteady flow conditions. The VG mixed flow turbine shows higher peak efficiency and swallowing capacity at various vane angle settings compared to an equivalent nozzleless turbine. Comparison with an equivalent straight vane arrangement shows a higher swallowing capacity but similar efficiencies. The VG turbine unsteady performance was found to deviate substantially from the quasi-steady assumption compared to a nozzleless turbine. This is more evident in the higher vane angle settings (smaller nozzle passage), where there are high possibility of choking during a pulse cycle. The presented steady and unsteady results are expected to be beneficial in the design of variable geometry turbochargers, especially the ones with a mixed flow turbine.