• Title/Summary/Keyword: High Pressure Stage

Search Result 531, Processing Time 0.028 seconds

Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment (고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석)

  • Kim, Gyung-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

Temperature Characteristics of Cascade Refrigeration System by Pressure Adjustment

  • Chung Han-Shik;Jeong Hyo-Min;Kim Yeong-Geun;Rahadiyan Lubi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2303-2311
    • /
    • 2005
  • Super low temperature has many applications nowadays, from the chemical processing, automotives manufacturing, plastic recycling, etc. Considering of its wide application in the present and the future, study of the super-low temperature refrigeration system should be actively carried out. Super low state temperature can be achieved by using multi-stage refrigeration system. This paper present the development and testing of cascade refrigerator system for achieving super-low temperature. On this experiment, two different types of HCFCs refrigerants are utilized, R-22 and R-23 were applied for the high stage and the low-pressure stage respectively. The lowest temperature in the low-pressure evaporator that can be achieved by this cascade refrigeration system is down to $-85^{\circ}C$. This experiment is aimed to study the effect of inlet pressure of the low-pressure stage evaporator and low-pressure stage compressors inlet pressure characteristics to the overall temperature characteristics of cascade refrigeration system.

A Study on Fluctuating Pressure Load on High Speed Train Passing through Tunnels

  • Seo Sung-Il;Park Choon-Soo;Min Oak-Key
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.482-493
    • /
    • 2006
  • The carbody structure of a high speed train passing through a tunnel is subjected to pressure fluctuation. Fatigue strength of the carbody structure against the fluctuating pressure loading should be proved in the design stage for safety. In this study, to get the useful information on the pressure fluctuation in the tunnel, measurement has been conducted during test running of KHST on the high speed line for two years. The measured results were analyzed and arranged to be used for carbody design. A prediction method for the magnitude and frequency of pressure change was proposed and the propagating characteristics of pressure wave was investigated. By statistical analysis for the measured results, a pressure loading spectrum for the high speed train was given. The proposed method can also be used to estimate the pressure loading spectrum for new high speed line at design stage combined with the results of train performance simulation.

Study of Mechanism of Counter-rotating Turbine Increasing Two-Stage Turbine System Efficiency

  • Liu, Yanbin;Zhuge, Weilin;Zheng, Xinqian;Zhang, Yangjun;Zhang, Shuyong;Zhang, Junyue
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.3
    • /
    • pp.160-169
    • /
    • 2013
  • Two-stage turbocharging is an important way to raise engine power density, to realize energy saving and emission reducing. At present, turbine matching of two-stage turbocharger is based on MAP of turbine. The matching method does not take the effect of turbines' interaction into consideration, assuming that flow at high pressure turbine outlet and low pressure turbine inlet is uniform. Actually, there is swirl flow at outlet of high pressure turbine, and the swirl flow will influence performance of low pressure turbine which influencing performance of engine further. Three-dimension models of turbines with two-stage turbocharger were built in this paper. Based on the turbine models, mechanism of swirl flow at high pressure turbine outlet influencing low pressure turbine performance was studied and a two-stage radial counter-rotation turbine system was raised. Mechanisms of the influence of counter-rotation turbine system acting on low-pressure turbine were studied using simulation method. The research result proved that in condition of small turbine flow rate corresponding to engine low-speed working condition, counter-rotation turbine system can effectively decrease the influence of swirl flow at high pressure turbine outlet imposing on low pressure turbine and increases efficiency of the low-pressure turbine, furthermore increases the low-speed performance of the engine.

Thermodynamic Analysis of High Pressure Multi-stage Reciprocating Compressors with Inter-coolers (중간 냉각기가 있는 고압 다단 왕복동식 압축기에 관한 열역학적 해석)

  • Lee, Euk-Soo;Kim, Myung-Hun;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1238-1247
    • /
    • 2003
  • Simplified thermodynamic analysis of high pressure 4-stage reciprocating compressors with 4 inter-coolers has been investigated to predict a behavior of a compressor system for NGV(natural gas vehicles). A computer program has been developed to predict and estimate the performance of high pressure 4-stage reciprocating compressor system. Thermodynamic properties of compressed natural gas(CNG) were calculated by ideal gas theory and compression cycle was assumed as reversible adiabatic compression and expansion processes, and isobaric intake and discharge processes. Comparison between results predicted by calculation model and measured by experimental tests is presented.

Experimental Study on the Two-Stage Light-Gas Gun (2단 경가스총에 대한 실험적 연구)

  • Lee, Jung-Kuen;Lee, Jong-Sung;Kim, Heuy-Dong;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.345-348
    • /
    • 2010
  • Light gas guns have a large number of applications in various fields of engineering. A two-stage light gas gun can develop an extremely high pressure in a very short interval of time. This can be employed efficiently in the application of ultra-high pressure liquid jets. In general, the two-stage light gas gun is made up of a high pressure tube, a compression tube and a launch tube, each stage being separated by diaphragms. The first diaphragm is installed downstream of the high pressure tube and the second, downstream of the compression tube. In the present study, experiments are carried out to investigate the projectile velocity and pressure behavior in the tubes according to the pressure changes at diaphragm opening. It is found that the rupture pressure of the first diaphragm has a dominant influence on projectile velocity. It is also observed that at pressures greater than 14 bar, the pressure in the launch tube exceeds that in the compression tube.

  • PDF

The Effect of Divergence Angle on the Control Valve Trim Characteristics (확산각이 밸브 트림 특성에 미치는 영향)

  • Go, Tae-Sig;Kim, Kuisoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • The multi-stage control valve is one of the devices which controls cavitation and high pressure drop. To attain the high pressure drop, the conventional control valves adopted the multi-stage trim to avoid the occurrence of local cavitation in valves. This work studied the effect of divergence angle on the characteristics of multi-stage trim. Pressure drop and flow characteristics was calculated for the 1 passage of multi-staged trim by using the FLUENT 6.3.26. The result showed that the pressure drop is significantly influenced by the divergence angle of multi-stage trim. In addition, the pressure drop increased consistently as the Reynolds number and divergence angle increases.

Rotordynamic Characteristics of High Pressure Multistage Pump (고압 다단펌프 축계 진동 특성 고찰)

  • Song, Ae Hee;Song, Jin Dae;Lim, Woo Seop;Yang, Bo Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.592-596
    • /
    • 2012
  • This paper presents numerical analysis result of rotor-bearing system of a multi-stage high pressure pump. Especially resonance possibility, stability and damping factor are estimated for a selected commercial multi-stage high pressure pump. The result shows that it is not easy to avoid resonance of rotor-bearing system against main excitation forces which are residual unbalance force and pressure pulsation. This makes damping effect be more important.

  • PDF

A Study of Steam Turbine Throttle Flow from Measured First Stage Shell Pressure (증기터빈 1단 Shell 압력측정에 의한 교축유동 고찰)

  • Yoon, In-Soo;Lee, Jae-Heon;Yu, Ho-Seon;Moon, Seung-Jae;Lee, Tae-Gu;Hur, Jin-Huek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.373-376
    • /
    • 2008
  • Industrial Steam Turbine first stage shell pressure is related to throttle flow. Theoretically, first stage shell pressure could, therefore, be measured and used as an index of turbine throttle flow. However, accurate flow measurements show that this pressure is not a reliable index of the actual flow. Data analysis of steam turbinessubjected to ASME acceptance tests shows that the use of first stage shell pressure as an index of throttle flow produced errors as large as 9.6 %. The mean of the errors was +2.2% with a standard deviation of ${\pm}$2.8 %. Applications that require an accuratedetermination of turbine steam flow, such as turbine acceptance testing, should, therefore, not rely on this method. Therefore, First stage shell pressure measurement serves as a valid and economical indicator of turbine throttle flow in cases where a high degree of accuracy in throttle flow measurement is not required but repeatability is desired, such as for boiler control. Generally speaking, Steam turbine first stage shell pressure may also be a very useful monitor of turbine performance when used with certain other turbine measurements.

  • PDF

Effects of flow variation in the first stage nozzle on the performance of a partial arc admission in a steam turbine (증기터빈 1단 노즐의 조속현상이 터빈성능에 미치는 영향)

  • Yoon, In-Soo;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • Power plant industry has been developed at high-capacity, high-technology, and innovation. Steam turbine became the most useful equipment that dominate more than 50% of all the world electricity production. And developed new materials of the turbine blade and extended length of the turbine last blade brought reform in steam turbine performance upgrade. In this paper, when do partial load driving in high-capacity steam turbine, optimum driving method found whether there is something. In operating steam turbine, there is a lot of loss from secondary wake and throttle of the 1st stage nozzle by the biggest leading factor that load fluctuation affects in high-pressure steam turbine performance. Effect of internal efficiency by 1 stage nozzle is the biggest here, but here fluid flow and flow analysis were not yet examined closely definitely. So, Analyzed design data and acceptance performance test result to applying subcritical pressure drum type 560 MW, supercritical-pressure once through type 500 MW, and 800 MW steam turbines actually. In conclusion, at partial load driving, partial arc admission(PAA) is more efficient than full arc admission(FAA) efficiency. This is judged by because increase being proportional with gross energy of stream that is pressure - available energy if pressure of stream that is flowed in to the turbine increases, available energy becomes maximum and turbine efficiency improves. Therefore, turbine performance is that preview that first stage performance fell if decline is serious in partial load because first stage performance changes according to load.

  • PDF