• 제목/요약/키워드: High Pressure Reactor

검색결과 458건 처리시간 0.029초

Modelling of effective irradiation swelling for inert matrix fuels

  • Zhang, Jing;Wang, Haoyu;Wei, Hongyang;Zhang, Jingyu;Tang, Changbing;Lu, Chuan;Huang, Chunlan;Ding, Shurong;Li, Yuanming
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2616-2628
    • /
    • 2021
  • The results of effective irradiation swelling in a wide range of burnup levels are numerically obtained for an inert matrix fuel, which are verified with DART model. The fission gas swelling of fuel particles is calculated with a mechanistic model, which depends on the external hydrostatic pressure. Additionally, irradiation and thermal creep effects are included in the inert matrix. The effects of matrix creep strains, external hydrostatic pressure and temperature on the effective irradiation swelling are investigated. The research results indicate that (1) the above effects are coupled with each other; (2) the matrix creep effects at high temperatures should be involved; and (3) ranged from 0 to 300 MPa, a remarkable dependence of external hydrostatic pressure can be found. Furthermore, an explicit multi-variable mathematic model is established for the effective irradiation swelling, as a function of particle volume fraction, temperature, external hydrostatic pressure and fuel particle fission density, which can well reproduce the finite element results. The mathematic model for the current volume fraction of fuel particles can help establish other effective performance models.

UASB 공법에 있어서 반응조의 형상변화에 따른 입상슬러지의 특성에 관한 연구 (The Characteristics of Biopellet Produced Upon Reactor Configuration in UASB System)

  • 민경석;안영호
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.679-688
    • /
    • 1994
  • 본 연구에서는 UASB 반응조의 형상변화에 따른 입상슬러지의 물리 화학적 및 형태학적인 특성이 조사되었다. 또한 반응조내의 수소분압의 크기에 따른 반응조운전의 안정성이 조사되었다. 수소분압이 높게 유지된 수정개발된 UASB 반응조의 경우가 상대적으로 수소분압이 낮게 유지된 일반적인 UASB 반응조의 경우에 비해 입상슬러지의 침전성 및 미생물보유능이 더 우수하게 나타났다. 입상슬러지의 형성과 그 안정성에 수소분압이 큰 영향을 미치는 것으로 나타났다. 입상슬러지의 화학적 조성식은 일반적인 UASB 반응조와 수정개발된 UASB 반응조가 각각 $C_7H_{12}O_{4.6}N$$C_5H_9O_3N$으로, 일반적인 미생물의 경험식인 $C_5H_7O_2N$과는 상이하게 나타났다. 특히 수정개발된 UASB 반응조의 경우 입상슬러지내에 질소성분이 일반적인 혐기성 미생물보다 높게 나타나, 입상슬러지의 발생기작으로서 polypeptide계 체외폴리머의 존재가능성을 보여주고 있다. 전자현미경을 이용한 형태화적 특성조사결과, 일반적인 반응조의 경우와는 달리 수소분압이 높게 유지된 수정개발된 UASB 반응조의 경우 입상슬러지의 표면에서는 Methanobrevibactor arboriphilus와 같은 크기와 형태를 한 수소이용메탄균의 성장이 다발을 이루며 관찰되었는데, 이러한 현상은 입상슬러지의 형성 메커니즘을 뒷받침해주고 있다. 우수한 입상슬러지의 형성을 위해서는 상대적인 수소분압의 크기에 따른 효과적인 상분리가 이루어져, acetogens과 수소이용메탄균들간의 공생관계가 잘 유지되도록 해주어야 할 것으로 사료된다. 수정개발된 UASB 반응조가 일반적인 UASB 반응조에 비하여 수소이용메탄균의 성장에 더욱 효과적인 환경을 제공하는 것으로 판단되며, 입상슬러지의 경영성과 반응조 전체의 유기물질 제거효율 뿐만 아니라, 운전의 안정성 측면에서도 더 우수한 것으로 사료된다.

  • PDF

High Pressure Liquid Jet Technology for Nano Particles Production

  • Mazurkiewicz, Marian;Rhee, Chang-Kyu;Weglinski, Bogumil
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.411-421
    • /
    • 2008
  • Principles and historical background of high pressure liquid jet (HPLJ) technology is presented in the paper. This technology can be applied, among others, for production of nano particles. This target can be achieved in various type of disintegration systems developed and designed on the base of this technology. The paper describes principles of two examples of such systems: HPLJ-reactor, called also a linear comminuting system, HPLJ- centrifugal comminuting system, which prototypes have been manufactured. A linear mill, being high energy liquid jet reactor, has been developed and tested for micronization of various types of materials. The results achieved so far, and presented in the paper, show its potential for further improvement toward nano-size particle production. Flexibility of adjustment of the reactors and the mechanism of the process allows for the creation of particles with unprecedented rheology. The reactor can be especially suitable to micronize, mix and densify materials with a wide range of mechanical properties for various industrial needs. Presented prototypes of comminution systems generate interesting potentials toward production of nano particles. Their performance, based on up today research, confirms expected high efficiency of materials disintegration, which opens a new challenge for industrial applications. The paper points out benefits and area of possible applications of presented technology.

원자로 노심 용융물의 고압분출 및 비산 현상에 대한 수치해석적 연구 (MOLTEN CORIUM DISPERSION DURING HYPOTHETICAL HIGH-PRESSURE ACCIDENTS IN A NUCLEAR POWER PLANT)

  • 김종태;김상백;김희동;정재식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.121-128
    • /
    • 2009
  • During a hypothetical high-pressure accident in a nuclear power plant (NPP), molten corium can be ejected through a breach of a reactor pressure vessel (RPV) and dispersed by a following jet of a high-pressure steam in the RPV. The dispersed corium is fragmented into smaller droplets in a reactor cavity of the NPP by the steam jet and released into other compartments of the NPP by a overpressure in the cavity. The fragments of the corium transfer thermal energy to the ambient air in the containment or interact chemically with steam and generate hydrogen which may be burnt in the containment. The thermal loads from the ejected molten corium on the containment which is called direct containment heating (DCH) can threaten the integrity of the containment. DCH in a NPP containment is related to many physical phenomena such as multi-phase hydrodynamics, thermodynamics and chemical process. In the evaluation of the DCH load, the melt dispersion rates depending on the RPV pressure are the most important parameter. Mostly, DCH was evaluated by using lumped-analysis codes with some correlations obtained from experiments for the dispersion rates. In this study, MC3D code was used to evaluate the dispersion rates in the APR1400 NPP during the high-pressure accidents. MC3D is a two-phase analysis code based on Eulerian four-fields for melt jet, melt droplets, gas and water. The dispersion rates of the corium melt depending on the RPV pressure were obtained from the MC3D analyses and the values specific to the APR1400 cavity geometry were compared to a currently available correlation.

  • PDF

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발 (Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed)

  • 남진무;주현철
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

고압 WGS 반응을 위한 Cu-ZnO/Al2O3 촉매상에서 기-액 계면 촉매 반응 특성 연구 (Catalytic Activity Tests in Gas-Liquid Interface over Cu-ZnO/Al2O3 Catalyst for High Pressure Water-Gas-Shift Reaction)

  • 김세훈;박노국;이태진
    • 한국수소및신에너지학회논문집
    • /
    • 제22권6호
    • /
    • pp.905-912
    • /
    • 2011
  • In this study, the novel concept catalytic reactor was designed for water-gas shift reaction (WGS) under high pressure. The novel concept catalytic reactor was composed of an autoclave, the catalyst, and liquid water. Cu-ZnO/$Al_2O_3$ as the low temperature shift catalyst was used for WGS reaction. WGS in the novel concept catalytic reactor was carried out at the ranges of 150~$250^{\circ}C$ and 30~50 atm. The liquid water was filled at the bottom of the autoclave catalytic reactor and the catalyst of pellet type was located at the gas-liquid water interface. It was concluded that WGS reaction occurred over the surface of catalysts partially wetted with liquid water. The conversion of CO for WGS was also controlled with changing content of Cu and ZnO used as the catalytic active components. Meanwhile, the catalyst of honey comb type coated with Cu-ZnO/$Al_2O_3$ was used in order to increase the contact area between wet-surface of catalyst and the reactants of gas phase. It was confirmed from these experiments that $H_2$/CO ratio of the simulated coal gas increased from 0.5 to 0.8 by WGS at gas-liquid water interface over the wet surface of honey comb type catalyst at $250^{\circ}C$ and 50 atm.

압력용기용 Ni-Mo-Cr계 고강도 저합금강의 P, Mn 함량에 따른 템퍼 취화거동 및 입계편석거동 평가 (Evaluation of Temper Embrittlement Effect and Segregation Behaviors on Ni-Mo-Cr High Strength Low Alloy RPV Steels with Changing P and Mn Contents)

  • 박상규;김민철;이봉상;위당문
    • 대한금속재료학회지
    • /
    • 제48권2호
    • /
    • pp.122-132
    • /
    • 2010
  • Higher strength and fracture toughness of reactor pressure vessel steels can be obtained by changing the material specification from that of Mn-Mo-Ni low alloy steel (SA508 Gr.3) to Ni-Mo-Cr low alloy steel (SA508 Gr.4N). However, the operation temperature of the reactor pressure vessel is more than $300^{\circ}C$ and the reactor operates for over 40 years. Therefore, we need to have phase stability in the high temperature range in order to apply the SA508 Gr.4N low alloy steel for a reactor pressure vessel. It is very important to evaluate the temper embrittlement phenomena of SA508 Gr.4N for an RPV application. In this study, we have performed a Charpy impact test and tensile test of SA508 Gr.4N low alloy steel with changing impurity element contents such as Mn and P. And also, the mechanical properties of these low alloy steels after longterm heat treatment ($450^{\circ}C$, 2000hr) are evaluated. Further, evaluation of the temper embrittlement by fracture analysis was carried out. Temper embrittlement occurs in KL4-Ref and KL4-P, which show a decrease of the elongation and a shifting of the transition curve toward high temperature. The reason for the temper embrittlement is the grain boundary segregation of the impurity element P and the alloying element Ni. However, KL4-Ref shows temper embrittlement phenomena despite the same contents of P and Ni compared with SC-KL4. This result may be caused by the Mn contents. In addition, the behavior of embrittlement is not largely affected by the formation of $M_3P$ phosphide or the coarsening of Cr carbides.