• Title/Summary/Keyword: High Pressure Reactor

Search Result 454, Processing Time 0.026 seconds

Development of a structural integrity evaluation program for elevated temperature service according to ASME code

  • Kim, Nak Hyun;Kim, Jong Bum;Kim, Sung Kyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2407-2417
    • /
    • 2021
  • A structural integrity evaluation program (STEP) was developed for the high temperature reactor design evaluation according to the ASME Boiler and Pressure Vessel Code (ASME B&PV), Section III, Rules for Construction of Nuclear Facility Components, Division 5, High Temperature Reactors, Subsection HB. The program computerized HBB-3200 (the design by analysis procedures for primary stress intensities in high temperature services) and Appendix T (HBB-T) (the evaluation procedures for strain, creep and fatigue in high temperature services). For evaluation, the material properties and isochronous curves presented in Section II, Part D and HBB-T were computerized for the candidate materials for high temperature reactors. The program computerized the evaluation procedures and the constants for the weldment. The program can generate stress/temperature time histories of various loads and superimpose them for creep damage evaluation. The program increases the efficiency of high temperature reactor design and eliminates human errors due to hand calculations. Comparisons that verified the evaluation results that used the STEP and the direct calculations that used the Excel confirmed that the STEP can perform complex evaluations in an efficient and reliable way. In particular, fatigue and creep damage assessment results are provided to validate the operating conditions with multiple types of cycles.

Optimization fluidization characteristics conditions of nickel oxide for hydrogen reduction by fluidized bed reactor

  • Lee, Jae-Rang;Hasolli, Naim;Jeon, Seong-Min;Lee, Kang-San;Kim, Kwang-Deuk;Kim, Yong-Ha;Lee, Kwan-Young;Park, Young-Ok
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2321-2326
    • /
    • 2018
  • We evaluated the optimal conditions for fluidization of nickel oxide (NiO) and its reduction into high-purity Ni during hydrogen reduction in a laboratory-scale fluidized bed reactor. A comparative study was performed through structural shape analysis using scanning electron microscopy (SEM); variance in pressure drop, minimum fluidization velocity, terminal velocity, reduction rate, and mass loss were assessed at temperatures ranging from 400 to $600^{\circ}C$ and at 20, 40, and 60 min in reaction time. We estimated the sample weight with most active fluidization to be 200 g based on the bed diameter of the fluidized bed reactor and height of the stocked material. The optimal conditions for NiO hydrogen reduction were found to be height of sample H to the internal fluidized bed reactor diameter D was H/D=1, reaction temperature of $550^{\circ}C$, reaction time of 60 min, superficial gas velocity of 0.011 m/s, and pressure drop of 77 Pa during fluidization. We determined the best operating conditions for the NiO hydrogen reduction process based on these findings.

EVALUATION OF PLANT OPERATIONAL STATES WITH THE CONSIDERATION OF LOOP STRUCTURES UNDER ACCIDENT CONDITIONS

  • MATSUOKA, TAKESHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • Nuclear power plants have logical loop structures in their system configuration. This paper explains the method to solve a loop structure in reliability analysis. As examples of loop structured systems, the reactor core isolation cooling system and high-pressure core injection system of a boiling water reactor are considered and analyzed under a station blackout accident condition. The analysis results show the important role of loop structures under severe accidents. For the evaluation of the safety of nuclear power plants, it is necessary to accurately evaluate a loop structure's reliability.

A Study on the Corrosion Characteristics Evaluation for Reactor Material of Waste Water Treatment (폐수처리 반응기용 재질의 부식특성 평가에 대한 연구)

  • Kim, Ki-Tae;Lee, Tae-Gu;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.2
    • /
    • pp.60-65
    • /
    • 2008
  • As the operating conditions in a supercritical oxidation reactor are set in high temperature with high pressure causing a reactor suffering from the harsh circumstances. It means the reactor adopts itself with Fe-Cr alloy in acidic atmosphere with low pH value and Ni alloy in basic atmosphere with high pH value due to its superior corrosion resistance. The study, whose target waster water is pertinent to the latter part, has selected Ni alloy such as ostenite type stainless steel 304 and 316, superstainless steel AL6XN, Inconel 625, MAT 21, and titanium Gr. 5 in order to measure corrosion resistance against those samples under the same conditions of temperature and pressure applied for a supercritical oxidation reactor. The result shows the identifiable difference in corrosion resistance by observing the surface states through a scanning probe microscope as well as measuring the weight loss through making the samples above deposited in wastewater for two-week and four-week stay. The purpose of this corrosion experiment is to identify the most corrosion-resistant material among sample species pre-selected according to pH concentration of wastewater in pursue of applying for a reactor exposed to the extreme corrosion environment. It is because such a reactor made of a verified material enables to safeguard a stable operation under the supercritical wastewater processing facility.

  • PDF

High-temperature Structural Analysis on the Small Scale PHE Prototype (소형 공정열교환기 시제품의 고온구조해석)

  • Song, Kee-nam;Lee, H-Y;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • PHE(Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR(Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the high-temperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype.

  • PDF

A FLOW CHARACTERISTICS FOR Y-CONNECTION IN HIGH-REYNOLDS-NUMBER FLOW SYSTEM (고레이놀즈수 유동 장치에서 Y형 이음의 유동 특성)

  • Park, Jung Gun;Park, Jong Ho;Park, Young Chul
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • In nuclear power plant, the reactor cooling system has maintained high-Reynolds-number flow above 1E+07 to cool a heat generated by the reactor. To minimize uncertainty for flow calibration, it is necessary to simulate the high Reynolds' number flow. Y-connection is selected to connect four (4) parallel high flow circulation pumps for maintaining the high flow rate. This paper describes the characteristics for Y-connection by computer flow simulation. It was confirmed through the results that the pressure loss of the Y-connection was lower than that of T-connection. Also as the connection angle of Y-connection was small, as the pressure loss was low.

Elastic High-temperature Structural Analysis on the Small Scale PHE Prototype Considering the Pipeline Stiffness (배관 강성을 고려한 소형 공정열교환기 시제품에 대한 탄성 고온구조해석)

  • Song, Kee-nam;Kang, J-H;Hong, S-D;Park, H-Y
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.48-53
    • /
    • 2011
  • A PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. A small-scale PHE prototype made of Hastelloy-X is being tested in a small-scale gas loop at Korea Atomic Energy Research Institute. In this study, as a part of the evaluation on the high-temperature structural integrity of the small-scale PHE prototype, we carried out macroscopic high-temperature structural analysis of the small-scale PHE prototype under the gas loop test conditions considering the pipeline stiffness.

Sludge Granulation Depending Hydrogen Feeding on The Varying Periods of Hydrogen Feeding and Starvation (수소기질 결핍 및 공급 기간비 변화에 따른 슬러지 입상화)

  • Jeong, Byung-Gon;Lee, Heon-Mo;Yang, Byung-Soo
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.387-398
    • /
    • 1996
  • Granular sludge formation and it's activity change are the most important factors in achieving successful start-up and operation of UASB reactor. Nevertheless, the detailed mechanism is still unknown. On the basic of the experiments in laboratory-scale UASB reactor, the effect of hydrogen partial pressure on sludge granulation was evaluated. Size distribution method and specific metabolic activity of the sludge with the operation time were used as a means for estimating the degree of the sludge granulation. At the constant hydrogen loading, the granulation increased as starvation periods in hydrogen supply increased, resulting in high organic removal efficiency. It was evidient that hydrogen play very important role in granulation and sludge granulation was achieved through mutual symbiosis between hydrogen utilizing bacteria and hydrogen producing bacteria under the hydrogen dificient conditions. Key words : granular sludge, UASB reactor, hydrogen partial pressure.

  • PDF

THERMALHYDRAULIC EVALUATIONS FOR A CANFLEX BUNDLE WITH NATURAL OR RECYCLED URANIUM FUEL IN THE UNCREPT AND CREPT CHANNELS OF A CANDU-6 REACTOR

  • Jun, Ji-Su
    • Nuclear Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.479-490
    • /
    • 2005
  • The thermalhydraulic performance of a CANDU-6 reactor loaded with various CANFLEX fuel bundles is evaluated by the NUCIRC code, which is incorporated with recent models of pressure drop and critical heat flux (CHF) predictions based on high-pressure steam-water tests for the CANFLEX bundle as well as a 37-element bundle. The distributions of channel flow rate, channel exit quality, critical channel power (CCP), and critical power ratio (CPR) for the CANFLEX bundles (with natural or recycled uranium fuel) in the CANDU-6 reactor fuel channel are calculated by the code. The effects of axial and radial heat flux on CCP are evaluated by assuming that the recycled uranium fuel (CANFLEX-RU) has the same geometric data as the natural uranium fuel bundle (CANFLEX-NU), but a different power distribution due to different fuel composition and refueling scheme. In addition, the effects of pressure tube creep and bearing-pad height are examined by comparing various results of uncrept, and $3.3\%\;and\;5.1\%$ crept channels loaded with CANFLEX bundles with 1.4 mm or 1.7 mm high bearing-pads with those of the 37-element bundle. The distributions of the channel flow rate and CCP for the CANFLEX-NU or -RU bundle show a typical trend for a CANDU-6 reactor channel, and the CPRs are maintained above at least 1.444 (NU) or 1.455 (RU) in the uncrept channel. The enhanced CHF of the CANFLEX bundle (particularly with 1.7mm height bearing-pads) produces a higher thermal margin and considerably less sensitivity to CCP reduction due to the pressure tube creep than the 37-element bundle. The CCP enhancement due to the raised bearing-pads is estimated to be about $3\%\~5\%$ for the CANFLEX-NU and $2\%\~6\%$ for the CANFLEX-RU bundle, respectively.

Evaluation of a Sodium-Water Reaction Event Caused by Steam Generator Tubes Break in the Prototype Generation IV Sodium-cooled Fast Reactor

  • Ahn, Sang June;Ha, Kwi-Seok;Chang, Won-Pyo;Kang, Seok Hun;Lee, Kwi Lim;Choi, Chi-Woong;Lee, Seung Won;Yoo, Jin;Jeong, Jae-Ho;Jeong, Taekyeong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.952-964
    • /
    • 2016
  • The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium-water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium-water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.