• 제목/요약/키워드: High Pressure Generation

검색결과 515건 처리시간 0.03초

전산 모델링을 통한 모노리스 촉매형 메탄화 반응기의 성능 특성 연구 (Computer Simulation of Methanation Reactor with Monolith Catalyst)

  • 지준화;김성철;홍진표
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.425-435
    • /
    • 2014
  • Simulation studies on catalytic methanation reaction in externally cooled tubular reactor filled with monolithic catalysts were carried out using a general purpose modelling tool $gPROMS^{(R)}$. We investigated the effects of operating parameters such as gas space velocity, temperature and pressure of feeding gas on temperature distribution inside the reactor, overall CO conversion, and chemical composition of product gas. In general, performance of methanation reaction is favored under low temperature and high pressure for a wide range of their values. However, methane production becomes negligible at temperatures below 573K when the reactor temperature is not high enough to ignite methanation reaction. Capacity enhancement of the reactor by increasing gas space velocity and/or gas inlet pressure resulted no significant reduction in reactor performance and heat transfer property of catalyst.

터널 주행속도 향상을 위한 고속열차 전두부 형상 최적화 (Nose Shape Optimization of the High-Speed Train for the Speed-up in Tunnel)

  • 구요천;윤수환;노주현;김규홍;이동호;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2207-2212
    • /
    • 2008
  • The next generation of Korean high-speed train under development will be designed for the maximum operating speed of 350km/h and maximum speed of 400km/h. This high-speed operation may cause the noise and vibration problems around tunnel exit due to the higher micro-pressure wave than present level. In this study, the nose shape optimization was conducted for the countermeasure against these problems. Axi-symmetric solver was used for numerical simulation, and response surface was used for efficiency of optimization process. Also the multi-step optimization was conducted to find out more accurate optimal shape. Through these analysis and optimization, it was found out that the optimal nose shapes for minimization of micro-pressure wave are definitely different along the nose length variation. And the mechanism of micro-pressure wave reduction was closely investigated by the analysis of generation process of compression wave in tunnel. The results are expected to be used as design guideline for performance improvement of the next generatin of Korean high-speed train.

  • PDF

유압식 추락 방지장치에 관한 연구 (A Study on the Hydraulic Fall Prevention Device)

  • 최정훈;구재민;석창성;허용;장성용
    • 한국정밀공학회지
    • /
    • 제27권11호
    • /
    • pp.78-83
    • /
    • 2010
  • Since a tower crane is too high for a worker to ascend and by the wind in the high altitude, the possibility of a safety accident is very high, a lift assist is used. In this study, the hydraulic fall prevention device using the pressure generation device by Seok, et al. was developed. For this, the effects on the fall prevention performances of factors such as gear clearance, oil viscosity, rotative velocity and so on were evaluated by the analysis of fluid flow using FEM and the prototype was producted and a function test was performed.

세라믹(Ba-Ti-Si) 방전관의 오존발생특성 (A Study on Ozone Generation Characteristic Using Ba-Ti-Si Ceramic Tube)

  • 이태관;이동훈
    • 대한환경공학회지
    • /
    • 제28권5호
    • /
    • pp.543-548
    • /
    • 2006
  • 본 논문은 Ba-Ti-Si형 고유전체 세라믹촉매방전관의 오존발생특성에 관해 연구이다. 기본적인 실험조건은 방전관의 외부직경 52 mm, 방전관 길이 350 mm, 전원 주파수 900 Hz, 냉각수 온도 $25^{\circ}C$, 유량 5, 10, 20 L/min, 방전관 내부 압력 1.2, 1.4, 1.6 atm 그리고 방전관과 전극 사이는 0.4, 0.6, 0.8 mm이다. 그리고 실험결과의 특성들은 오실로스코프상에 나타난 리사쥬 도형의 값을 환산한 소비전력으로 유량 20 L/min, 방전간격 0.6 mm, 압력 1.6 atm 그리고 반응기 내의 무성방전에 사용된 소비전력 150 W에서 최대 오존발생효율 175 g/kWh를 얻을 수 있었다. 그리고 최대 오존발생효율 영역은 1.6 atm 이하의 압력에서는 유량 20 L/min 이하에서 측정되었다. 또한 최대 오존발생효율의 영역은 1.6 atm 이상의 압력에서는 유량 20 L/min 이상인 경우에 오존발생 효율이 높아졌다.

파랑작용에 의한 모래지반의 액상화에 관한 대형 수리모형실험 (Large-Scale Experiments on the Wave-Induced Liquefaction of Sandbed)

  • 강윤구;스즈끼고지로
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.26-32
    • /
    • 2007
  • A series of large-scale experiments were carried out in order to examine wave-induced liquefaction in a loosely packed sandbed, its afterward high densification and liquefaction by oscillatory pore pressure. The experiments were conducted in a Large Hydro-Geo Flume that can nearly solve the problems of scale effects of the sandbed, and the 50% sieve diameter of sand was 0.2 mm. The generation of residual pore pressure and its afterward high densification which had observed by Takahashi et al. (1999) in a wave flume experiment using fine sand with the size of 0.08 mm. As a result, the relative density of the sandbed after high densification was increased up to 79% and liquefaction by oscillatory pore pressure was not observed.

풍동을 이용한 고속열차 머드플랩 형상변경에 따른 공력소음 특성 분석 (Effects of mud-flap parameters on aeroacoustic noise generation inside high-speed trains)

  • 류지명;박준홍;박기형;송시몬;최성훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.469-472
    • /
    • 2007
  • Aeroacoustic sound induced from inter-couch spacing is an important contributor to interior noise generation for high speed trains. Especially the open space between mud-flap has significant impact from flow-structure interactions. To understand noise generation mechanism, experiments were performed using the wind tunnel. To find mud-flap parameters for minimal noise generations the various shape of the mud-flap was installed and its effects on the wall-pressure generation were investigated.

  • PDF

대기압 플라즈마와 응용 (Atmospheric Plasma and Its Applications)

  • 엄환섭
    • 한국진공학회지
    • /
    • 제15권2호
    • /
    • pp.117-138
    • /
    • 2006
  • 지표면에서 플라즈마는 전기방전에 의하여 만들어낸다. 그래서 대부분의 플라즈마 발생은 1백만분의 1기압보다 더 낮은 기압에서 발생하고 있었다. 그러나 많은 플라즈마 응용은 고기압에서 발생한 플라즈마를 요구하고 있다. 진공펌프와 같은 고가의 장비를 피하기 위하여 과학자들은 1기압이나 그이상의 압력에서 플라즈마를 발생하는 연구를 하기 시작했다. 많은 량의 제료 공정, 환경보호와 개선, 그리고 고효율 에너지 창출과 이용 등의 분야에 플라즈마를 사용할 때에는 오직 더 많은 량의 플라즈마를 더욱 값싸게 만들 때에만 가능한 것이다. 우리는 따라서 고기압에서 플라즈마를 만들어내는 새로운 방법을 개발하고 이러한 플라즈마가 21세기 산업에 적용될 수 있는 새로운 기반을 구축하는 연구를 수행하고 있다. 이러한 기술은 미래의 재료 공정이나, 환경 그리고 에너지 분야에 지대한 영향을 미칠 것으로 생각한다.

설정 음압 및 스펙트럼 재현을 위한 음향 환경 시험 챔버의 기본 설계 변수 선정 (Design of High Intensity Acoustic Test Facility to Generate Required Sound Pressure Level and Spectrum)

  • 김영기;우성현;김홍배;문상무;이상설
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.867-872
    • /
    • 2002
  • A high intensity acoustic test facility is constructed at Korea Aerospace Research Institute (KARI) by 2003. The reverberant chamber of the facility has a volume of 1,228 cubic meters and shall provide an acoustic environment of 152 dB over the frequency range of 25 Hz to 10,000 Hz. The facility consists of a large scaled reverberant chamber, acoustic power generation systems, gases nitrogen supply systems, and acoustic control systems. This paper describes how the basic parameters of a chamber and power generation systems are controlled to meet the requirement of the test. The volume of a reverberant chamber is controlled by the size of test objects and the reverberant characteristics of a chamber. The capacity of acoustic power generation systems is determined by the energy absorption of a chamber and the efficiency of acoustic modulators. Simple math is employed to calculate the required power of acoustic modulators. Moreover, the paper explains how the distribution of sound pressure level at low frequency is checked by analytical and numerical methods.

  • PDF

진동하는 고 받음각 날개주위의 비정상 아음속 유동해석 (Analysis of Unsteady Subsonic Flow Around a High Angle of Attack of the Oscillating Airfoil)

  • 문지수;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.434-440
    • /
    • 2011
  • Oscillating airfoil haw been challenged for the dynamic stalls of airfoil am wind turbines at high angle of attach. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance am safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed for the oscillating airfoil at high angle of attack around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.2 and Reynolds number of $1.2{\times}10^4$. The lift, drag, pressure distribution, etc. are analyzed according to the pitching oscillation. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF

점화시기 근방의 고난류 생성을 위한 기초연구 (The Fundamental Study on Generation of High Turbulence at Vicinity of Ignition Timing)

  • 홍재웅;송영식
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.275-283
    • /
    • 1996
  • The turbulence in the engine cylinder is generated by intake pressure and inertia effects during intake stroke, and is generated and decreased by piston compression effect during the compression stroke. The classified needed to generate high turbulence flow at vicinity of ignition timing. Therefore, A single-shot Rapid Intake Compression Expansion Machine (RICEM), which is able to realize the intake, compression, expansion or intake-compression stroke under high piston speed respectively, was manufactured and evaluated in order to find methods to generate high turbulence at around spark timing. It was found that the characteristics of RICEM such as reapperance, leakage, piston displacement with crank angle was corresponding to those of real engine and RICEM simulates not only high temperature and high pressure field but also flow patterns of the actual engine by increasing of pressure in intake line.