• 제목/요약/키워드: High Pressure Combustion Performance

검색결과 209건 처리시간 0.02초

스파크 점화기관의 가솔린-메탄올 연료를 사용한 기관연소 및 배기성능에 관한 연구 (A Study on Performance of Engine Combustion and Emission Using Gasoline-Methanol Fuel in Sl Engine)

  • 윤창식;김치원
    • 한국안전학회지
    • /
    • 제7권3호
    • /
    • pp.3-13
    • /
    • 1992
  • In recent years, the study about the high efficiency and low fuel consumption of the internal conbustion engine has been mainly proceeding. To achieve these goals, the improvement of combustion process in Sl engine and the use of substitute energy are suggested. When the methanol blend fuel Is used, the combustion rate of the initial ignition is diminishing by high latent evaporation of methanol. But it attracts the attention because of the high octane number, and lean mixture peculiarity. Considering these facts, the gasoline-methanol blend fuel In engine operation has been used to compare and analyze the pressure development, rate of heat release, mass burned fraction, and combustion process. The results of experiment show the power increase, lean combustion and low harmful component of emission.

  • PDF

탄성내열재 배합 환경에 따른 내열 성능 변화에 관한 연구 (A Study on the Thermal Protection Performance of Elastomeric Insulators in Different Mixing Environments)

  • 김남조;서상규;강윤구;고청아
    • 한국추진공학회지
    • /
    • 제23권1호
    • /
    • pp.108-115
    • /
    • 2019
  • 고온 고압의 연소가스로부터 구조물을 보호하는 탄성내열재는 재료 조성 및 열환경 조건에 따라 열반응에 차이를 보인다. 본 논문에서는 탄성내열재의 배합 환경 변화에 따른 열반응 특성을 비교하였다. 탄성내열재의 내열 성능 시험은 내열고무성능평가장치(TPREM)를 이용하였으며, 연소실 압력 1,000 psig에서 연소가스속도를 각각 20 m/s과 100 m/s로 시험하였다. 연소실 압력-시간 선도, 재료 내부 온도-시간 선도, 탄성내열재 시편의 잔류 두께 및 열파괴두께를 획득하였다. 배합 환경에 따른 탄성내열재의 내열 성능은 유사하였다.

초고압 연료분사장치 디젤기관의 연소특성에 관한 연구(I) (A Study on the Combustion Characteristics of Ultra High Pressure Fuel Injection System in a Diesel Engine(I))

  • 최두석
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.34-44
    • /
    • 1999
  • The purposes of this study were to evaluate engine performance and to analyze smoke emission characteristics for varied injection pressures and engine operating conditions of an electronically-controlled ultra high pressure fuel injection system(UHPFIS). It was discovered that the engine performance with the present UHPFIS was far better than what was initially expected. And the UHPFIS permitted engine operation at air/fuel ratios richer than 20 : 1 without increasing smoke emissions. It was discovered that the indicated mean effective pressure was increased, while the specific fuel consumption and the amount of soot were decreased, as the fuel rail pressures were improved atomization of the fuel spray. As the intake air temperature was increased from $38\sim205^{\circ}C$ in 38 degree increments, the indicated mean effective pressure was dropped while the specific fuel consumption was increased.

  • PDF

Swirl Groove Piston에 의한 바이오 디젤연료의 연소과정에 관한 연구 (A Study on Combustion Process of Biodiesel Fuel using Swirl Groove Piston)

  • 방중철;김성훈
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.105-113
    • /
    • 2009
  • The performance of a direct-injection type diesel engine often depends on the strength of swirl or squish, shape of combustion chamber, the number of nozzle holes, etc. This is of course because the combustion in the cylinder was affected by the mixture formation process. In this paper, combustion process of biodiesel fuel was studied by employing the piston which has several grooves with inclined plane on the piston crown to generate swirl during the compression stroke in the cylinder in order to improve the atomization of high viscosity fuel such as biodiesel fuel and toroidal type piston generally used in high speed diesel engine. To take a photograph of flame, single cylinder, four stroke diesel engine was remodeled into two stroke visible engine and high speed video camera was used. The results obtained are summarized as follows; (1) In the case of toroidal piston, when biodiesel fuel was supplied to plunger type injection system which has very low injection pressure as compared with common-rail injection system, the flame propagation speed was slowed and the maximum combustion pressure became lower. These phenomena became further aggravated as the fuel viscosity gets higher. (2) In the case of swirl groove piston, early stage of combustion such as rapid ignition timing and flame propagation was activated by intensifying the air flow in the cylinder. (3) Combustion process of biodiesel fuel was improved by the reason mentioned in paragraph (2) above. Consequently, the swirl grooves would also function to improve the combustion of high viscosity fuel.

적접분사식 LPG엔진에서 연료분사압력이 연소/배기특성에 미치는 영향 연구 (Effects of Injection Pressures on Combustion and Emissions in a Direct Injection LPG Spark Ignition Engine)

  • 이석환;조준호;오승묵
    • 한국분무공학회지
    • /
    • 제16권1호
    • /
    • pp.7-14
    • /
    • 2011
  • High pressure LPG fuel spray with a conventional swirl injector was visualized and the impact of the injection pressure was also investigated using a DISI (direct injection spark ignition) LPG single cylinder engine. Engine performance and emission characteristics were evaluated over three different injection pressure and engine loads at an engine speed of 1500 rpm. The fuel spray pattern appeared to notably have longer penetration length and narrower spray angle than those of gasoline due to its lower angular momentum and rapid vaporization. Fuel injection pressure did not affect combustion behaviors but for high injection pressure and low load condition ($P_{inj}$=120 bar and 2 bar IMEP), which was expected weak flow field configuration and low pressure inside the cylinder. In terms of nano particle formation the positions of peak values in particle size distributions were not also changed regardless of the injection pressure, and its number densities were dramatically reduced compared to those of gasoline.

Effect of Compression Ratio on the Combustion Characteristics of a Thermodynamics-Based Homogeneous Charge Compression Ignition Engine

  • Han, Sung Bin
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.61-66
    • /
    • 2015
  • Homogeneous charge compression ignition (HCCI) engine combines the combustion characteristics of a compression ignition engine and a spark ignition engine. HCCI engines take advantage of the high compression ratio and heat release rate and thus exhibit high efficiency found in compression ignition engines. In modern research, simulation has be come a powerful tool as it saves time and also economical when compared to experimental study. Engine simulation has been developed to predict the performance of a homogeneous charge compression ignition engine. The effects of compression ratio, cylinder pressure, rate of pressure rise, flame temperature, rate of heat release, and mass fraction burned were simulated. The simulation and analysis show several meaningful results. The objective of the present study is to develop a combustion characteristics model for a homogeneous charge compression ignition engine running with isooctane as a fuel and effect of compression ratio.

직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화 (An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine)

  • 주봉철;노병준;김규철;이삼구
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF

직접분사식 압축점화 디젤엔진의 연소 및 배기특성에 관한 연구 (A Study on Combustion and Emission Characteristics in Compression Ignition CRDI Diesel Engine)

  • 김기복;최일동;하지훈;김치원;윤창식
    • 한국산업융합학회 논문집
    • /
    • 제17권4호
    • /
    • pp.234-244
    • /
    • 2014
  • Recently it has been focused that the automobile engine has developed in a strong upward tendency for the use of the high viscosity and poorer quality fuels in achieving the high performance, fuel economy, and emission reduction. Therefore it is not easy to solve the problems between low specific fuel consumption and exhaust emission control at motor cars. In this study, it is designed and used the engine test bed which is installed with turbocharger and intercooler. In addition to equipped using CRDI by controlling injection timing with mapping modulator, it has been tested and analyzed the engine performance, combustion characteristics, and exhaust emission as operating parameters, and they were engine speeds(rpm), injection timing(bTDC), and engine load(%). From the result of an experimental analysis, peak cylinder pressure and the rate of pressure rise were increased, and the location of it was closer toward top dead center according to the increasing of engine speed and load, and with advancing injection timing. The combustion characteristics are effected by fuel injection timing due to be enhanced the mass burned fraction. Using the engine dynamometer for analyzing the engine performance, the engine torque and power have been enhanced according to advancing the fuel injection timing. In analyzing of exhaust emission, there has been a trade-off between PM and NOx with increasing of engine speed and load, and with advanced injection timing. The experimental data are shown that the formation of NOx has increased and PM, vice versa.

정적연소기 내 바이오디젤-에탄올 혼합연료의 분사압력에 따른 연소 및 배출가스에 관한 연구 (An Experimental Study on the Combustion an Emission Characteristics with Injection Pressure of Biodiesel-Ethanol Blending Fuel in CVC)

  • 엄동섭;박경균;동윤희;이성욱
    • 한국분무공학회지
    • /
    • 제15권3호
    • /
    • pp.150-156
    • /
    • 2010
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of blending fuel and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber. High speed camera was applied to visualize the physics of development of combustion processes, and combustion pressure and exhaust emissions were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

4 기통 스파크 점화 기관의 노킹 신호 해석 방법 (Methods of Knock Signal Analysis in a S.I. Engine)

  • 김경운;전광민
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.12-21
    • /
    • 1993
  • In recent years, high efficiency, high performance, and low pollutant emmision engines have been developed. Knock phenomenon has drawn interests because it became an hinderance to engine power and efficiency increase through higher compression ratio. Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and accompanied a high pitched metallic noise. And this phenomenon is characterized by knock occurrence percentage, knock occurrence angle and knock intensity. A four cylinder spark ignition engine is used in our experiment, and its combustion chamber pressure is measured at various engine speeds, ignition timing. The data are analyzed by numerous methods in order to select the optimum methods and to achieve better understanding of knock characteristics. Methods using band-pass filter, third derivative and step method are shown to be the most suitable, while methods using frequency analysis are shown to be unsuitable. Because step method only uses signals above threshold value during knocking condition, pressure signal analyses with this method show good signal-to-noise ratio.

  • PDF