• Title/Summary/Keyword: High Precision

Search Result 6,218, Processing Time 0.034 seconds

A Study on Structural Design and Evaluation of the High Precision Cam Profile CNC Grinding Machine (고 정밀 캠 프로파일 CNC 연삭기의 구조설계 및 평가에 관한 연구)

  • Lim, Sang-Heon;Shin, Sang-Hun;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.113-120
    • /
    • 2006
  • A cam profile CNC grinding machine is developed for manufacture of high precision contoured cams. The developed machine is composed of the high precision spindle using boll bearings, the high stiffness box layer type bed and the three axis CNC controller with the high resolution AC servo motor. In this paper, structural and modal analysis for the developed machine is carried out to check the design criteria of the machine. The analysis is carried out by FEM simulation using the commercial software, CATIA V5. The machine is modeled by placing proper shell and solid finite elements. And also, this paper presents the measurement system and experimental investigation on the modal analysis of a grinding machine. The weak part of the machine is found by the experimental evaluation. The results provide structure modification data for good dynamic behaviors. And safety of the machine was confirmed by the modal analysis of modified machine design. Finally, the cam profile grinding machine was successfully developed.

Development of High-Precision Measuring Device for Six-axis Force/Moment Sensor (로봇용 6축 힘/모멘트 센서를 위한 고성능측정기 개발)

  • Shin, Hyi-Jun;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.46-53
    • /
    • 2007
  • This paper describes the development of a high-precision measuring device with DSP (digital signal processor) for the accurate measurement of the 6-axis force/moment sensor mounted to a humanoid robot's ankle. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, and Fz and moments Mx, My, and Mz to itself, and control the foot using the measured them. The applied forces and moments should be measured from two 6-axis force/moment sensors mounted to the feet, and the sensor is composed of Fx sensor, Fy sensor, Fz sensor, Mx sensor, My sensor and Mz sensor in a body (single block). In order to acquire output values from twelve sensors (two 6-axis force/moment sensor) accurately, the measuring device should get the function of high speed, and should be small in size. The commercialized measuring devices have the function of high speed, unfortunately, they are large in size and heavy in weight. In this paper, the high-precision measuring device for acquiring the output values from two 6-axis force/moment sensors was developed. It is composed of a DSP (150 MHz), a RAM (random access memory), amplifiers, capacities, resisters and so on. And the characteristic test was carried out.

A Study on the Evaluation Method of Lane Departure Warning System Using High-precision Maps (정밀도로지도를 활용한 차로 이탈 경고장치 평가 방안에 관한 연구)

  • Jung-Uck, LEE;Duck-Ho, KIM
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.181-199
    • /
    • 2022
  • This study presented a methodology for evaluating the performance of the lane departure warning system was derived by calculating the relationship between the behavior information of the car and the location of the high-precision map using a high-precision map. The evaluation criteria of the mood and lane departure warning system for the installation of road markings in Korea were analyzed, a high-precision map was constructed to meet the evaluation criteria, and an evaluation system was constructed to verify the proposed methodology. Evaluation of lane departure warning systems using high-precision maps can be quantified and applied to various road environments through accurate location-based comparative analysis and reduced manual post-processing work time to confirm evaluation results.

Evaluation on Shape Machining of Dies and Molds in High speed Machining using Ball-End Milling (볼 엔드밀을 이용한 고속가공에서 금형제품의 형성가공 특성파악)

  • 김경균;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.143-146
    • /
    • 1995
  • Due to the recent growth of die/mold machining industry, demands for the high-precision and the high0quality of die product are increasing rapidly. Free surfaces of die/mold are often manufactured using the ball-end milling process. It is difficult to find the cutting condition of the ball-end milling process due to the free form machining for the various tool paths on inclined surface.

  • PDF

Repetitive Control of Contact Force (반복 제어를 이용한 접촉력 제어)

  • Jeon, Doyoung;Jong, Ilyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.4
    • /
    • pp.122-128
    • /
    • 1996
  • In high speed and high precision assembly systems such as a surface mounting device and robotend effector, the contact force control is required. As the operation repeats, the repetitive control is applied to reduce the periodic contact force errors. Since high order unmodelled dynamics are easily excited in contact force control, a Q filter was introduced and its robust stability was analyzed. Simulation and Experimental results show the effectiveness of the algorithm.

  • PDF

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System (초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어)

  • Choi Young-Man;Gweon Dae-Gab;Lee Moon G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

A novel hybrid type encoder design for the position control with the high-resolution

  • Kim, Jong-Kwon;Park, Sung-Jun;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1216-1219
    • /
    • 2003
  • The position control is very important in semiconductor manufacturing devices, precision machining tools, precision measuring instruments, etc. The accuracy of measurement for the distance in these devices affect on the performance of the whole devices. Therefore, in those precision instruments, a sensing device that can measure the distance of movement with high-precision resolution is required. In this paper, a novel hybrid (digital and analog) type encoder is proposed. It is shown that from several experiments, a high-resolution angular position measurement device can be designed with a low cost incremental encoder and a DSP controller.

  • PDF

Review of A High Precision Actuator Mechanism Using PZT (PZT를 이용한 초정밀 구동의 문헌적 고찰)

  • Choi, H.S.;Lee, J.;Jung, M.C.;Yun, D.W.;Han, C.S.;Hong, W.P.;Kang, E.G.;Choi, H.J.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.524-529
    • /
    • 2004
  • Recently High precision positioning device is used in many kinds of manufacturing and scientific instruments. Piezoelectric transducer is applied to the positioning devive as actuator, PZT has a high resolution, however, moving range is short. Many researcher have developed the mechanism for increasing a motion range. The types of increasing motion range mechanism with PZT are inertial slider, friction driver, ultrasonic motor, etc. In this paper we discuss the review of the hish precision actuator mechanism with PZT. Many kinds of mechanism for high precision are shown and compared.

  • PDF